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1. INTRODUCTION 
 

One of the main objectives of the MIND STEP project is to include individual decision making 
(IDM) unit in policy models. Among these IDM units, are innovative microeconomic models 
of farmers’ production choices that have been developed in task 3.4. Part of these models  
are micro-econometric models and aim at empirically analyzing crop farmers’ choices in terms 
of yields, chemical input uses, acreages and crop management practices (CMP) and dairy 
farmers’ choices in terms of feeding strategy and land allocation. Those models are primarily 
specified for exploiting the information contained in available cost accounting datasets and 
are estimated for two main purposes:  being used directly as simulation models, or providing 
behavioral parameters to – more complex – policy simulation models (e.g., IFM-CAP, 
GLOBIOM, CAPRI, MAGNET). Another type of model, based on a Data Envelopment Analysis 
(DEA) framework has been developed in task 3.4 in order to investigate the potential of 
optimizing land allocation between crops and grassland to reduce greenhouse gas (GHG) 
emissions.  

A significant part of task 3.4 builds on the micro-econometric multi-crop (MEMC) models 
developed in recent years by partner INRAE. These models are random – farm specific – 
parameter models which, once estimated, allow the calibration of technical and behavioral 
parameters at the farm level based on a well-defined statistical background. Within task 3.4, 
these models have been extended to account for the decision of farmers to choose to produce 
specific subsets of crops among all the crops they could produce. Significant work has also 
been undertaken during the MIND STEP project to allow the estimation of MEMC models by 
other partners of the project. A first set of work has been carried out to enable the estimation 
of these models on data available for European member states, i.e. FADN data. Indeed, the 
estimation of MEMC models requires information on input uses per crop, while the FADN 
data only contain input expenditures at the farm level. An original procedure has 
consequently been proposed to allocate input uses at the farm level to input uses per crop 
based. A second set of work has been done to alleviate the significant estimation burden of 
MEMC models and enabling their use on a routine basis, as well as for incorporating CMP 
choice in these models. 

In addition to these works on MEMC models, research has been conducted in Task 3.4 to 
identify the heterogeneity in the flexibility of dairy farms based on their observed short run 
responses, in terms of feed concentrate uses and acreage adjustments, to input and output 
prices. This work aims at providing an economic explanation to the relative rigidity of dairy 
farms, which may in fact be due to the existence of unobserved adjustment costs, and at 
identifying, among a sample of farmers, those who appear to be most flexible in the short run. 
For this purpose, an analytical framework, based on random parameter panel smooth 
transition regression (PSTR) model implicitly accounting for the impacts of input adjustment 
costs on dairy farmers’ production decisions, has been proposed and estimated, as an 
illustrative purpose, on a sample of French dairy farms.  

Finally, partner WU has developed an integrated multi-production technology framework to 
investigate the potential of land optimization in dairy farms to reduce GHG emissions. Indeed, 
circular farming has been proposed as a cost-effective way to reduce GHG emissions by the 
Dutch Ministry of Agriculture in 2019. Dutch dairy farms have already incorporated circular 
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principles in their farming activities, e.g. upcycle manure as crop fertilizers, use crop residuals 
for animal feed. However, no study until now has quantified the technical and environmental 
efficiency of dairy farms which incorporate these circularity principles, and explores land 
reallocation. The framework proposed by WU combines a by-production approach with a 
network DEA model to answer these questions.  

The key messages of D3.4 are the following: 

- Methodological developments 

First, micro-econometric models of farmers’ production choices can be substantially 
improved by accounting for unobserved heterogeneity, adjustment costs or production 
practice choices. Second, mathematical programming models and micro-econometric models 
are complementary for improving simulation models based on individual farms. For instance, 
parameter estimates obtained from random parameter micro-econometric models can be 
used for calibrating mathematical programming models at the farm level. Micro-econometric 
models of input allocations to crops can be used for estimating input uses at the crop level 
that can be in turn used to feed mathematical programming models.  

- Policy implications of obtained empirical results 

The empirical results presented in D3.4 show that farmers tend to be efficient from a technical 
viewpoint given their current production technologies. This result is welcome as famers’ 
efficiency underlies the economic models considered for policy analysis. It also suggests that 
solving environmental issues implies to solve economic trade-offs that involve changes in 
production technologies. The results obtained in D3.4 also show that farmers respond to 
economic incentives, even if their responsiveness display significant heterogeneity, implying 
that economic policy instruments could be useful for achieving the objectives of the EU Green 
Deal. Finally, some empirical results demonstrate the importance and heterogeneity of 
farmers’ adaptability in response price variations on agricultural markets. This heterogeneity 
can mostly be attributed to factors that are specific to each farmers and not observable in 
economic data. Further investigation, through targeted surveys for instance, might reveal 
some of these factors and allow designing policies, targeted on higher education or training 
for instance, which could improve farmers’ adaptability.  

- Data needs 

The work presented in D3.4 show that public authorities should invest in more accurate data 
collection. Of course, research regularly complain about data lacking. Yet, the results we 
obtain document the adverse consequences of these missing data issues on the ability to 
assess the effects of agri-environmental policies. For instance, the work on input cost 
allocation tends to show that micro-econometric models allow to obtain reliable estimates of 
input uses for major crops but much more questionable estimates of input uses for minor 
crops. Indeed, the fact that FADN data report input uses at the farm level (standard 
accountancy data) instead of at the crop and farm level (cost accounting data) can only be 
imperfectly overcome. This provides interesting research topics for micro-econometricians 
but lead to imprecise inputs to simulation models. Of course, collecting cost accounting data 
would be costly. A less costly option would be to collect mean input use levels at the NUTS1 
or NUTS2 level. This information could be useful for improving the cost allocation modules 
proposed in D3.4. This information, however, is unavailable for many Member States. The 
same observation holds for innovative production practices, whether agronomic practices 
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(e.g., low input practices, biocontrol techniques) or precision agriculture techniques. This is 
unfortunate for economists involved in the quantitative assessment of agri-environmental 
policies but also for farmers interested in changing their production practices. 

Research conducted in Task 3.4 for accounting for crop choices in MEMC models is presented 
in section 2. The proposed approach for allocating input costs to crops and hence enabling 
the estimation of these models on FADN data is presented in section 3, while section 4 is 
devoted to the work undertaken to alleviate their estimation burden. The PSTR model of dairy 
farms’ production decisions is presented in section 5. Finally, section 6 is devoted to the 
presentation of the efficiency model developed by WU in the task. 

 

2. MICRO-ECONOMETRIC MULTI-CROP MODEL WITH 
ENDOGENOUS REGIME CHOICE1 

2.1. Introduction 

Market prices and agricultural policies impact crop supplies through their effects on input uses 
and yield levels, and acreage choices. Starting in the eighties with the pioneering work of Just et 
al (1983), Chambers and Just (1989) and Chavas and Holt (1990), agricultural production 
economists developed micro-econometric multi-crop (MEMC) models for analyzing and 
quantifying these effects with farm accountancy data. These models have then been widely 
applied during the last decades. 

In MEMC models, farmers are assumed to allocate their cropland to the crops of a given crop set 
in order to maximize their expected profit or the expected utility of their profit. This ensures the 
economic consistency of the resulting models. However, currently available MEMC models ignore 
or poorly describe an important decision of crop producers: their choice to produce a subset of 
crops among the set of crops they can produce and sell. Indeed, applications of MEMC models 
frequently ignore null acreages by relying either on very specific farm samples (e.g., Just et al, 
1983, 1990; Bayramoglu and Chakir, 2016) or on crop aggregation that eliminate null crop 
acreages (e.g., Oude Lansing and Peerlings, 1996; Serra et al, 2005; Oude Lansink, 2008; 
Carpentier and Letort, 2012, 2014).  Yet, sample selection prevents extrapolation of the 
estimation results to farmers not producing all considered crops while crop aggregation induces 
information losses regarding production choices at the crop level. 

A few recent MEMC models explicitly account for null crop acreages (e.g., Sckokai and Moro, 2006, 
2009; Lacroix and Thomas, 2011; Bateman and Fezzi, 2011; Platoni et al, 2012).  These models are 
designed as censored regression (CR) systems and are estimated following two-step approaches 
inspired by that initially proposed by Shonkwiler and Yen (1999). These MCEM based on censored 

 

1 The work presented in this is section has led to a publication in the American Journal of Agricultural Economics 
(AJAE) (Koutchadé et al, 2021). A significant part of the results presented in the paper have been obtained within 
the MIND STEP project. This is reflected in the dates of submission and resubmission of the paper: the initial 
version, submitted prior to the MIND STEP project (in February 2019), did not contain the empirical application 
focusing on the evaluation of the EU support to protein peas while the revised version submitted in May 2020 
did. As acknowledgement to MIND STEP is missing in the publication, INRAE is in contact with the AJAE editor to 
correct this.  
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regressions (CR-MCEM) suitably account for null acreages from a statistical viewpoint but display 
severe micro-economic inconsistencies. 

Indeed, these models are conceived as statistical versions – featuring error terms and accounting 
for mass points at 0 – of theoretical micro-economic models ignoring null acreages. Their main 
shortcoming is due to their relying on a single crop acreage choice model, whatever the subset of 
crops actually produced. These models thus fail to recognize that the crop acreage choices of a 
farmer structurally depend on the composition of the set of crops actually produced by this 
farmer. For instance, farmers are unlikely to consider the prices of the crops they don’t produce 
when choosing the acreages of the crops they produce.  Of course, the lack of micro-economic 
coherency of CR-MCEM models substantially undermines their ability to yield consistent 
estimates of crop acreage responses to economic incentives. The composition of the produced 
crop sets, which displays substantial variability when null acreages are frequent, deeply impacts 
the structure of farmers’ crop acreage choices. These effects of farmers’ crop set choices are 
ignored in CR-MCEM models. 

The recent articles addressing the issue raised by null crop acreages from a statistical viewpoint 
by considering CR-MEMC models don’t focus either on corner solutions in acreage choices or on 
farmers’ crop choices. By contrast, the main objective of this article is to develop a consistent 
modelling framework for analyzing farmers’ crop set choices and, as a result, for handling null 
crop acreages in MEMC models. More precisely, the main aims of this article are (a) to revisit the 
null acreage issue in multi-crop models from a theoretical viewpoint, (b) to propose an original 
MEMC model that accounts for farmers’ crop choices in a way that is consistent from an economic 
viewpoint, together with a suitable estimation approach, and (c) to show, by means of an 
empirical application focused on crop diversification choices, that considering crop set choices 
significantly enriches micro-econometric analyses of farmers’ crop supply. 

Our multi-crop micro-economic modelling framework is based on an expected profit 
maximization problem considering land as an allocable quasi-fixed input. This problem includes 
the usual crop acreage non-negativity constraints but also production regime fixed costs. The 
production regime chosen by a farmer is defined by the subset of crops that this farmer decides 
to plant. The regime fixed costs consist of unobserved costs – such as unmeasured marketing 
costs or implicit labor and machinery management costs – that depend on the set of crops that 
are grown but that don’t depend on the acreages of these crops. Accordingly, our modelling 
framework assumes that farmers choose the production regime maximizing their expected profit, 
regime fixed costs included, as well as the related optimal crop acreage, yield and input use levels. 
Importantly, our considering regime fixed costs implies that null acreages are not necessarily due 
to binding non-negativity constraints. 

Based on this micro-economic background, we design our MEMC model as an endogenous 
regime switching (ERS) multivariate model with multiple regimes. This endogenous regime 
switching micro-econometric multi-crop (ERS-MEMC) model consists of a probabilistic regime 
choice model coupled with a set of regime specific MEMC models. As estimating multivariate ERS 
models with multiple regimes is challenging and considering regime specific fixed costs increases 
the estimation burden, choosing relevant functional forms for the per regime MEMC models 
appears crucial. Thanks to their specific properties, the Multinomial Logit (MNL) acreage choice 
models proposed by Carpentier and Letort (2014) are particularly well suited in that respect. They 
yield simple and well-behaved functional forms for important components of our ERS-MEMC 
model, thereby significantly reducing its estimation cost. Relying on the MNL acreage choice 
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models also enables us, following Koutchadé et al (2018), to go one step further and to account 
for farmers’ unobserved heterogeneity by considering a random parameter version of our ERS-
MEMC model. Estimating ERS models with multiple regimes is challenging mostly because their 
likelihood function involves integration of expectations over the probability distribution of 
multivariate latent error terms (e.g., Pudney, 1989). Also, the likelihood function of our ERS-
MEMC model needs to be integrated over the probability distribution of its random parameters. 
Our estimation approach combines tools from the micro-econometrics and computational 
statistics literatures. 

We illustrate the empirical tractability of our approach by estimating our model for a panel data 
sample of French arable crop producers. Our results tend to demonstrate that our random 
parameter ERS-MEMC model performs well according to standard fit criteria. They also tend to 
show that regime specific fixed costs significantly matter in farmers’ crop choice, along with crop 
expected returns. Importantly, these results also demonstrate that acreage choices’ responses to 
economic incentives strongly depend on the production regime choices. The elasticity of crop 
acreages in crop prices increases in the number of produced crops, a pattern that cannot be 
reproduced by CR-MEMC models. Finally, our simulation results show that the acreage of minor 
crops respond non-linearly to increases in their prices due to production regime changes. 

Our contributions are twofold. First, ERS-MEMC model presented in this article accounts for null 
crop acreages while relying on a well-defined micro-economic background. As a result, it is the 
first theoretically coherent response to an issue that is pervasive when analyzing crop production 
with farm level data. Other ERS-MEMC models could be considered, but the one presented here 
allows to consider production regime fixed costs as well as farm specific parameters while 
remaining empirically tractable. Second, this model allows to disentangle the effects of the main 
economic drivers of farmers’ crop supply choices. It accounts for intensive and extensive margin 
choices, including the effects on crop set choices at the extensive margin. This unique feature is 
of special interest for investigating future agri-environmental policies. In particular, owing to its 
positive agronomic effects, crop diversification is a key feature of environmentally friendly crop 
production systems (e.g., Matson et al, 1997; Tilman et al, 2002; Lin, 2011; Kremen et al, 2012; 
Bowman and Zilberman, 2013). Our modelling framework is especially well-suited for analyzing 
samples containing both specialized and diversified farms as well as for simulating the effects of 
policy instruments aimed to foster crop diversification.  

The rest of this article is organized as follows. The approach proposed to account for crop choices 
in micro-economic models of acreage decisions is presented in the first section. The structure of 
the corresponding ERS-MEMC model is described in the second section. The main features of our 
estimation strategy are presented in the third section, with a specific focus on the main issues 
arising with random parameter ERS-MEMC models.  Illustrative estimation and simulation results 
are provided in the fourth section. Finally, we conclude. 

 

2.2. Regime switching in multi-crop models: corners, kinks and jumps 

This section presents the theoretical modelling framework we propose for dealing with null crop 
acreages in micro-econometric acreage choice models. We proceed in three steps. First, we 
present the micro-economic crop acreage choice model underlying our ERS-MEMC model. 
Second, we compare this model to the models that have been proposed for modelling multiple 
binding non-negativity constraints or regime switching. We focus on the ability of these models 
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to cope with corners, kinks and jumps in farmers acreage choices.  Third, we present the 
functional form of the crop acreage choice models used in our ERS-MEMC model. 

2.2.1. Crop choices and crop acreages 

We assume that farmers can allocate their fixed cropland area to K crops. Accordingly, set  
K {1,..., }K=  denotes the set of crops that any considered farmer can produce and sell and 

farmers’ problem consists of optimally choosing a crop acreage share vector ( : )ks k= Îs K  

satisfying ³s 0  and 1¢ =s ι , term ι  being the dimension K unitary column vector. 

We now introduce notions and notations aimed at describing farmers’ decisions to produce 
a subset of crops among crop set K . Set {1,..., }R=R  denotes the set of feasible production 

regimes. A production regime is defined by the subset of crops with strictly positive acreages. 

Set ( )r+K   denotes the subset of crops planted in regime r while 0K ( )r   denotes its 

complement to K , that is to say the subset of crops that are not planted in regime r. Finally, 
function ( )r s  defines the regime of the acreage share vector s. 

We assume that farmers are risk neutral. In year t farmer i is assumed to choose her/his crop 
acreages by solving the following expected profit maximization problem: 

(1) ( ){ }max ( ) ( )   s.t.    and  1it it itC D r¢ ¢- - ³ =s s π s s s 0 s ι  

Term ,( : )it k it kp= Îπ K  is the vector of crop returns expected by farmer i when choosing s in 

year t. Function ( )itC s  is the implicit management cost of acreage s and ( )itD r  is the fixed cost 

of production regime r incurred by farmer i in t. This cost is fixed in the sense that it doesn’t 
depend on s. 

Acreage management costs ( )itC s  are costs not included in the crop gross margins that vary 

in s. They include unobserved variable input costs. They also account for the implicit costs 
related to constraints on acreage choices due to limiting quantities of machinery or labor, or 
to agronomic factors. These constraints providing motives for diversifying crop acreages, 
function ( )itC s   is assumed to be convex in s. In order to ensure that the solution in s to 

problem (1) is unique, we strengthen this assumption by assuming that function ( )itC s   is 

strictly convex in s.2 These crop acreage management costs prevent farmers to solely produce 
the most profitable crop. 

Regime fixed cost terms ( )itD r   introduce discrete elements, and thus severe 

discontinuities, in farmers’ acreage choices. These costs do not depend on the chosen acreage 
in a given regime, they only depend on the crop set defining this regime. They account for the 
hidden fixed costs incurred by the farmer for any acreage choice in the considered regime, 
such as fixed costs related to the marketing process of the crop products or those incurred 
when purchasing specific variable inputs, when renting specific machines, when seeking crop 
specific advises, etc. These regime fixed costs may also depend on characteristics of crop 

 

2 Analogous cost functions are used in the Positive Mathematical Programming literature (e.g., Mérel and Howitt, 
2014; Heckelei et al, 2012) and in the multi-crop econometric literature (e.g., Heckeleï and Wolff, 2003; 
Carpentier and Letort, 2012, 2014). 
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biological cycles. For instance, part-time farmers may decide not to produce a given crop 
because the management of this crop is not compatible with their other non-farming 
activities. 

The smooth acreage management cost function ( )itC s  and the discontinuous regime fixed 

cost function ( )( )itD r s   are expected to impact farmers’ crop diversification in opposite 

directions. While limiting quantities of quasi-fixed factors impose constraints fostering crop 
diversification, regime fixed costs are expected to foster crop specialization. In particular, the 
regime fixed costs are expected to be non-decreasing in the number of produced crops.3 

We solve farmers’ expected profit maximization problem following a standard backward 
induction approach according to which farmers choose their production regime after 
examining their expected profit in each possible production regime. 

First, the acreage choice problem is solved for each potential regime. This yields the regime 
specific optimal acreage shares: 

(2a) { }0( ) argmax ( )  s.t.  ,  1  and 0  if  ( )it it it kr C s k r¢ ¢= - ³ = = Îss s π s s 0 s ι K   

and the regime specific optimal expected profit levels (regime specific fixed costs excluded): 

(2b) { }0( ) max ( )  s.t. , 1 and 0 if ( )it it it kr C s k r¢ ¢P = - ³ = = Îs s π s s 0 s ι K  . 

for r Î R . 

Second, the optimal production regime itr  is determined by comparing the regime specific 

expected profit levels while accounting for the production regime fixed costs. Accordingly, the 
expected profit maximizing production regime itr  is defined as the solution in r to a simple 

discrete maximization problem with: 

(3) ( ){ }argmax ( ) ( ( ))it r it it itr r D rrÎ= P - sR  . 

Assuming that optimal regime itr   is unique, optimal acreage choice its   is obtained by 

combining equations (3) and (2a), with: 

(4a) ( )it it itr=s s . 

Similarly, equations (3) and (2b) yield the expected profit level itP , with: 

(4b) ( )it it itrP = P . 

Regime specific acreage choices ( )it rs  are derived from optimization problems that differ from 

one regime to the other due to nullity constraints on crop acreages. These constraints 
significantly impact how the acreage choices of the produced crops respond to market 

 

3 Note however that in specific empirical settings the ( )itD r  terms may also capture the effects of exogenous 

factors preventing farmer i to produce specific crops, e.g. due to unsuitable soils or to lacking outlets. In the 
empirical application presented in section 4, such features are unlikely to occur. Our sample covers a limited 
geographical area and we only consider crops which can be profitably produced in this area.  
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conditions. For instance, the regime r acreage choice, ( )it rs , doesn’t respond to changes in the 

expected returns of the crops not produced in regime r. Similarly, acreages of produced crops 
are expected to be more responsive to economic incentives in regimes containing numerous 
crops than in regimes containing only a few crops, crop acreage substitution opportunities 
being more limited with small crop sets. 

2.2.2. Corners, kinks and jumps in acreage choice models 

Our micro-economic crop acreage choice model is an example of ERS multivariate model with 
multiple regimes. To our knowledge, ERS models for multiple choices have been mostly used 
for demand systems, either for consumption goods (e.g., Wales and Woodland, 1983; Lee and 
Pitt, 1986; Kao et al, 2001; Millimet and Tchernis, 2008) or for production factors (e.g., Lee 
and Pitt, 1987; Arndt, 1999: Chakir and Thomas, 2003). Most of these studies rely on the dual 
modelling framework proposed by Lee and Pitt (1986). 

The main differences between the approaches that can be considered for handling null 
acreages in MEMC models are illustrated schematically in Figure 1. Panels (a)-(c) depict how 
the crop acreage of a given crop depends on its expected return according to three multi-crop 
acreage models. These models differ on how they handle null acreage choices – based either 
on ERS models or on CR systems – and on whether they account for crop or regime production 
fixed costs or not. Indeed, Figure 1 shows that this comparison is all about “corners”, “kinks” 
and “jumps”. 

Models that account for null acreages and don’t account for crop production fixed costs are 
defined as systems of standard Tobit models (e.g., Moore and Negri, 1992; Moore et al, 1994). 
They define null acreages as corner solutions at zero. Their crop acreage models display one 
kink at the crop return level at which the non-negativity constraint of the considered crop just 
bind, as illustrated in panel (a). 

Panel (b) depicts patterns allowed by models that account for null acreages based on CR 
systems as well as for crop production fixed costs. These crop acreage choice models display 
one kink and, potentially, a jump at the crop return level where farmers are indifferent 
between planting the considered crop or not. Being based on extensions of generalized Tobit 
models, recent CR-MEMC models (e.g., Sckokai and Moro, 2006, 2009; Lacroix and Thomas, 
2011; Bateman and Fezzi, 2011; Platoni et al, 2012) implicitly account for production regime 
costs. 

Crop acreage choices patterns allowed in our ERS-MEMC model are depicted in panel (c). 
Due to the effects of the regime choices on acreage choices, crop acreages may display several 
kinks. A kink occurs wherever changes in the expected return of the considered crop induce 
a regime switch. The first kink occurs at the crop return level above which farmers decide to 
plant the considered crop while others occur at regime switch points concerning the decision 
to produce or not to produce other crops. Our ERS-MEMC may also induce jumps at regime 
switch points, these jumps being due to threshold effects induced by regime fixed costs. 
According to our knowledge, this is the first MEMC model allowing such crop choice patterns. 
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Figure 1. Typical multi-crop acreage models handling null crop acreages 

 

2.2.3. Crop choices and MNL acreage choice models 

The regime fixed cost considered in the maximization problem (3) determining the optimal 

regime itr  is ( )( ( ))it itD rr s  rather than simply ( )itD r . In effect, the production regime of ( )it rs  

may not be regime r, depending on the functional form chosen for the cost function ( )itC s . 

The regime of ( )it rs  is only guaranteed to be a regime “included” in regime r as elements of 
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( )it rs  may be null due to binding non-negativity constraints. The production regime of ( )it rs  is 

regime r if and only if , ( )k its r  is an interior solution to problem (2a) for any ( )k r+Î K . 

For instance, if ( )itC s  is quadratic in s then , ( )k its r  is null if ,k itp  is sufficiently low. Moreover, 

neither crop acreage ( )it rs  nor expected profit ( )it rP  are obtained in analytical closed form in 

the quadratic case, precisely because elements of ( )it rs  may be corner solutions at 0. 

By contrast, the Multinomial Logit (MNL) crop acreage share models proposed by Carpentier 
and Letort (2014) appear especially convenient in this context.4  This modelling framework 
relies on a family of acreage management cost functions ensuring that optimal crop acreage 
shares ( )it rs  and expected profit levels ( )it rP  satisfy two important conditions for any regime 

r. 

First, these terms are obtained in analytical closed forms. For instance, if the acreage 
management cost function is assumed to have the linear-entropic functional form 

1
,( ) ( )

( ) ( ) lns s
it k k it i k kk r k r

C s s sb a+ +

-

Î Î
= +å ås

K K
  with 0ia >   then the regime specific acreage 

share vectors ( )it rs  are given by Standard MNL acreage share models: 

(5) 
( )

( )
, ,

,

, ,

( )exp ( )
( )

( )exp ( )

s s
k i k it k it

k it s s
i it it

j r
s r

j r

a p b

a p b
Î

-
=

-å l l ll K

 for k Î K . 

where function ( )kj r   indicates whether crop k belongs to regime r or not; with ( ) 1kj r =   if 

( )k r+Î K   and ( ) 0kj r =   otherwise. Second, it is easily seen from equation (5) that, for 

Standard MNL acreage share models, if crop k belongs to regime r then the optimal acreage 
share of crop k in regime r is ensured to be strictly positive. More generally, considering 

Standard or Nested MNL crop acreage models ensures that the production regime of ( )it rs  is 

regime r. 

The fact that , ( )k its r  cannot be null means that null crop acreages are handled in a specific way 

in the MNL modelling framework. Crop acreage non-negativity constraints never bind when 
deriving MNL acreage share models.5 These constraints just imply that the optimal acreage 
shares of the least profitable crops (acreage management cost included) are very small when 
they are much less profitable than other crops of the considered crop set.6 The acreage shares 

 

4 Of course, choosing functional forms for their being convenient is unwarranted. Yet, their estimation being 
particularly challenging, all specifications of ERS models with multiple regimes that were used in empirical 
studies  exploit, to some extent, properties of specific functional forms (e.g., Wales and Woodland, 1983; Lee 
and Pitt, 1986, 1987; Arndt et al, 1999). Also, other properties of MNL acreage share models make them 
empirically relevant for modelling production choices of arable crop producers (Carpentier and Letort, 2014). 

5 This property comes from properties of the entropy terms that appear in the acreage cost management 

functions leading to MNL acreage share models (Carpentier and Letort, 2014). Term lnk ks s-  tends to 0 as ks  

decreases to 0 (we have ln 0k ks s =  if 0ks =  according to a standard extension by continuity result) while its 

derivative in ks  tends to infinity as ks  decreases to 0. 

6 It is easily seen, from equation (5), that , ( )k its r  decreases to 0 as ,k itp  decreases to - ¥ . 
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of the least profitable crops may only become null when farmers choose their production 
regime. Farmers exclude these crops from their production plans when they can get higher 
expected profit level without planting them. Incidentally, this feature of MNL acreage choice 
models prevents their use in CR-MEMC models.  

2.3. ERS-MEMC model with regime specific fixed costs: micro-economic 
structure 

This section presents the structure of the ERS-MEMC model considered in the empirical 
application presented in the next section. This model is composed, on the one hand, of yield 
supply functions, variable input demand functions and acreage share choice models for each 
produced crop, and on the other hand, of a probabilistic production regime choice model. 
This MEMC model can be interpreted as an extension to an ERS framework with regime fixed 
costs of the model proposed by Carpentier and Letort (2014). 

As in Koutchadé et al (2018) we adopt a random parameter approach for accounting for 
farmers’ and farms’ unobserved heterogeneity. We assume that the parameters of farmers’ 
production choices, including those driving farmers’ responses to economic incentives, are 
farm specific. Accordingly, the main aim of the estimation procedure is to recover their 
distribution across the farmers’ population represented by the considered sample. 

The considered ERS-MEMC model is presented in three steps. First, we present the 
production choice models defined at the crop level, i.e. the yield supply and variable input 
demand models. Second, we present the per regime acreage share choice models. Finally, we 
describe the production regime choice model. This presentation is organized following the 
structure of the model: yield supply and variable input demand models are used for defining 
expected crop return models. These models are then used for defining crop acreage share 
models, which are themselves used for defining the production regime choice model. 

2.3.1. Yield supply and variable input demand models 

We assume that farmers produce crop k from a variable input aggregate under a quadratic 
technological constraint. I.e., we assume that the yield of crop k obtained by farmer i in year 
t is given by: 

(6) 1 2
, , , , ,1 / 2 ( ) ( )y x x

k it k it k i k it k ity xb a b-= - ´ -  

where ,k itx   denotes the variable input use level. Parameter ,
x
k ia  is required to be (strictly) 

positive for the production function to be (strictly) concave in ,k itx . It determines the extent 

to which the yield supply and the input demand of crop k respond to the input and crop prices. 

Terms ,
y
k itb   and ,

x
k itb  have direct interpretations in the considered yield function. Term ,

y
k itb   

is the yield level that can be potentially achieved by farmer i in year t while ,
x
k itb  is the input 

quantity required to achieve this potential yield level. These parameters are decomposed as 

, , ,0 , ,( )y y y y y
k it k i k k it k itb b e¢= + +δ c   and , , ,0 , ,( )x x x x x

k it k i k k it k itb b e¢= + +δ c   where terms ,
y
k itc   and ,

x
k itc   are 

observed variable vectors used to control for observed farm heterogeneity (i.e., farm size and 
capital endowment per unit of land) and climatic conditions (i.e., temperature and rainfall). 

The ,
y
k itb   and ,

x
k itb   terms are farmer specific parameters aimed at capturing unobserved 
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heterogeneity across farms and farmers. These terms, as well as the ,
x
k ia  random parameter, 

mainly capture three kinds of effects: those of the natural and material factor endowment of 
farms (e.g., soil quality, machinery quality), of farmers’ practice choices (e.g., crop 

management practices, cropping systems) and of the skills of farmers. Terms ,
y
k ite  and ,

x
k ite  are 

standard error terms aimed to capture the effects on production of stochastic events (e.g., 
climatic conditions, and pest and weed problems). We assume that farmer i is aware of the 

content of ,
x
k ite  when deciding his variable input uses. 

Assuming that farmer i maximizes the expected return to variable input uses of each crop, 
we can easily derive the demand of the variable input for crop k: 

(7a) 2 2
, , ,0 , , , , ,( ) 1 / 2y y y x y

k it k i k k it k i k it k it k ity w pb a e-¢= + - ´ +δ c  

and the corresponding yield supply: 

(7b) 1
, , ,0 , , , , , ( )x x x x x

k it k i k k it k i k it k it k itx w pb a e-¢= + - +cδ  . 

Terms ,k itp   and ,k itw   respectively denote the expected output and input prices of crop k. 

Assuming that the expectations of ,
y
k ite  and ,

x
k ite  of farmer i are null at the beginning of the 

cropping season,7 this farmer expects the following return to the variable input: 

(8) ( ) ( ) 2 1
, , , ,0 , , , ,0 , , , ,( ) ( ) 1 / 2y y ys x x xs x

k it k it k i k k it k it k i k k it k i k it k itp w w pp b b a -¢ ¢= + - + + ´δ c δ c   

for crop k when she/he chooses her/his acreage shares. Vector , ,( , )ys xs
k it k itc c   is defined by 

replacing in vector , ,( , )y x
k it k itc c  the climatic variables by their expectations. 

2.3.2. Acreage share choice models 

As discussed in Carpentier and Letort (2014), the Standard MNL crop acreage model given in 
equation (5) appears to be rather rigid because it treats the different crops symmetrically. 
Indeed, arable crops can often be grouped according to their competing for the use of quasi-
fixed factors or according to their agronomic characteristics. The ERS-MEMC model 
considered in our application presented in the next section is based on a 3 level Nested 
Multinomial Logit (NMNL) acreage share model. 

For sake of simplification, we consider a 2 level NMNL acreage share model in this section.8 
Crop set K   is partitioned into G   mutually exclusive groups of crops. Term {1,..., }G=G  

defines the considered group set. Group g Î G  defines the crop subset ( )gK . Crops belonging 

to a same group are assumed to share similar agronomic characteristics and to compete more 
for farmers’ limiting quantities of quasi-fixed factors than they compete with crops of other 
groups. The corresponding acreage management cost function is given by: 

 

7 As discussed below, this assumption can be relaxed, e.g. for accounting for potential correlations between the 

,
y
k ite  and ,

x
k ite  error terms on the one hand, and the ,

s
k ite  error terms on the other hand. 

8 The model used in our application is presented in the Online Appendix. 
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(9) 1 1
, ( ) ( ) ( ) ( ), |( ) |( )1 ( )

( ) ( ) ln ( ) ln
Gs s s

it k k it i g g g g i m g m gk g g m g
C s s s s s sb a a- -

Î = Î Î
= + +å å å ås

K G K
 

where ( )gs  denotes the acreage share of group g and ,( )m gs  that of crop m in group g. Terms 
s
ia   and ( ),

s
g ia   are farm specific parameters determining the flexibility of farmers’ acreage 

choices. 9  The larger they are, the more the acreage share choice respond to economic 

incentives (because the less management costs matter). Condition ( ), 0s s
g i ia a³ >  is sufficient 

for cost function ( )itC s  to be strictly convex in s. 

The linear terms of the cost function ( )itC s  are decomposed as , , ,0 , ,( )s s s s s
k it k i k k it k itb b e¢= + +cδ  

where ,
s
k itz   are explanatory variable vectors used to control for observed heterogeneous 

factors and climatic events. Farm specific parameters ,
s
k ib   account for unobserved 

heterogeneity effects. Error terms ,
s
k ite  capture the effects of stochastic variations of the cost 

due to random events such as unobserved interactions of climatic events and soil 
characteristics impacting the soil state at planting. Farmers are assumed to know these terms 

when choosing their acreages. Error terms ,
s
k ite  are assumed to be independent from the error 

terms of the yield supply and input demand equations, ,
y
k ite  and ,

x
k ite . 

Farmers’ optimal crop acreage choices as given by equation (2a) can be derived for any 
production regime. It suffices to solve the maximization problem given in equations (3). For 
instance, eight acreage share subsystems are considered in our empirical application, one for 
each production regime present in the data. Of course, the functional form of the derived 
acreage choice function depends on the subset of crops produced in the considered regime. 
Assuming that crop k belongs to group g, we obtain: 

(10) 
( ) ( )( )

( )( )

1
( ),

1
( ),

( ) 1

( ), , , ( ), , ,( )

, ( )

( ), , ,( )

( )exp ( ) ( )exp ( )
( )

( )exp ( )

s s
i g i

s s
i h i

s s s s
k g i k it k it g i it itg

k it
s s
h i it ith h

j r j r
s r

j r

a a

a a

a p b a p b

a p b

-

-

-

Î

Î Î

- -
=

-

å

å å

l l ll

l l llG

K

K

 

and: 

(11) ( )( )
1

( ),( )
1

( ), , ,( )
( ) ( ) ln ( )exp ( )

s s
i h is s s

it i h i it ith h
r j r

a a

a a p b
-

-

Î Î
P = -å å l l llG K

. 

Parameter s
ia  drives the land allocation to crop group acreages while parameters ( ),

s
g ia  drive 

the allocation of the crop group acreages to crop acreages. 

Production regime choice model 

Observing that the regime specific optimal acreage choice ( )it rs  necessarily belongs to regime 

r in the MNL case considered here, the regime specific expected profit levels ( )it rP  can be 

used for defining a regime choice model based to the choice problem described in equation 

(4). Let define the regime fixed costs as 1
,( ) ( )it i i r itD r d r es -= - . The farm specific parameters 

 

9 We have we have ( ),
s s
g i ia a=  if group g contains a single crop. 
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( )id r  aim to capture the effects of unobserved factors affecting the regime fixed costs. The 

error terms ,r ite  aim to capture the effects of stochastic factors and define the regime choice 

model as a probabilistic discrete choice model, with: 

(12) { }1
,argmax ( ) ( )it r it i i r itr r d r es -

Î= P - +R . 

Scale parameter is  determines the extent to which the regime expected profit levels (i.e. the 

( ) ( )it ir d rP -  terms) explain the production regime choice as regards to the effects of the ,r ite  

idiosyncratic terms. The higher is , the more the expected profit levels impact the observed 

regime choices. 

Regime fixed costs ( )id r   can be specified in different ways. These costs are expected to 

increase with the number of crops. Transaction costs and labor requirements related to a 
production regime increase with the number of crops produced in that regime. Indeed, one 
way to specify ( )id r  is to consider a sum of fixed costs associated to each crop produced in 

the considered production regime, with ,( )
( ) c

i k ik r
d r b+Î

= å K
  where ,

c
k ib   is the fixed costs 

related to crop k. Interestingly, this specification allows computing the fixed costs of regimes 
which are not observed in the data. This is of particular interest for simulation purposes. For 
example, changes in market conditions can lead farms to adopt new production regimes. This 
regime fixed cost specification is used in our empirical application. 

This specification of the regime fixed costs can be usefully compared with more general 
ones. Farmers may purchase inputs specific to different crops from the same supplier, implying 
savings in the related transaction costs. Moreover, different crops may generate work peak 
loads during the same periods, implying that can concentrate their workload (or that of their 
employees) during these periods if they wish so. In these cases, the regime fixed costs are 
sub-additive in the crop fixed costs. One way to deal with this pattern consists of directly 
specifying these fixed costs as famers specific constant terms on a regime per regime basis, 

with ,( )i r id r d=  (given that the fixed cost of a “benchmark regime” needs to be normalized). 

Of course, the costs corresponding to regimes that are not observed in the data can’t be 
recovered, thereby constraining the regime set that can be simulated to be equal to the one 
that is observed in the data. 

2.3.3. Overall structure of the ERS-MEMC model 

The ERS-MEMC model is composed of three main parts: a subsystem of yield supply and input 
demand equations (7), a set of per regime subsystems of acreage share equations (10) and a 
probabilistic regime choice model (12). 

The set of dependent variables of this model contains the crop level production choices. These 
consist of the yield levels, input use levels and acreage shares of each crop that are produced 

by for farmer i in year t. These are collected in vector ( , , )it it it
+ + +y x s . Production regime itr  is the 

last dependent variable of the model. 

The set of explanatory variables contains crop prices, variable input prices and the control 
variable vectors used in the crop yield supply, input demand and acreage share equations for 
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all crops. These variable are collected in vector itz , which defines the information set of the 

ERS-MEMC model. 

The sole fixed parameters appearing in the model equations are the coefficients of the 
control variable coefficient vectors for all crops, which are collected in vector 0δ . 

The considered ERS-MEMC model contains two main subsets of random components: a vector 
of random parameters and a vector of error terms. 

Vector iγ   collects the farm specific parameters of the model, with ( , , )i i i is=γ β α  . This 

vector contains the potential yield parameters, the input requirement parameters, the cost 
function linear parameters and the crop fixed costs parameters for all crops. These random 
parameters are collected in vector iβ . It also contains the input use flexibility parameters for 

all crops and the acreage choice flexibility parameters, which are collected in vector iα  . 

Finally, iγ  contains the scale parameter, is , of the regime choice model. 

In the error term vector ( , )yx s
it it it=ε ε ε , sub-vector yx

itε  collects the error terms error terms 

of crop yield supply and input demand equations for all crops while sub-vector s
itε  collects 

those of the acreage share equations. Finally, vector ite  collects the error terms of the regime 

choice model (i.e., ,r ite  for r Î R ). 

2.4. ERS-MEMC model with regime specific fixed costs: estimation strategy 

This section presents the main features of the estimation strategy adopted for estimating the 
ERS-MEMC model described above. As this model involve multiple endogenous regimes, 
considers numerous interrelated production choices and features random parameters, we 
impose parametric distributional assumptions on its random components (i.e. error terms and 
random parameters) that ensure its empirical tractability. We also impose simplifying 
assumptions regarding the dynamics of farmers’ choices and the multi-crop production 
technology. These assumptions are presented and discussed first. Then, we present how the 
main parameters of interest of our ERS-MEMC model are recovered from the data. Finally, we 
briefly describe our estimation strategy. More specifically, we present the main estimation 
issues that we face when estimating our random parameter ERS-MEMC model and the 
approaches chosen for overcoming these issues. A detailed description of our estimation 
procedure is provided in Appendix 2A. This procedure combines techniques found in the 
micro-econometrics and computational statistics literatures. 

2.4.1. Main probabilistic assumptions 

We assume that terms ( , )is isε e  , iγ   and itz   are independently distributed for any pair ( , )t s  . 

This implies that the explanatory variables vector, itz , is assumed to be (i) strictly exogenous 

with respect to the error term vectors and (ii) independent of the random parameters iγ . This 

latter assumption, which is standard in random parameter models, defines iγ  as a term that 

captures heterogeneity effects not captured by control variables itz . 

We further assume that error term ( , )it itε e  vectors are independently distributed across 
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time. Combined with the fact that vector itz  doesn’t contain any lagged endogenous variable, 

this serial independence assumption implies that our MEMC model can be interpreted as a 
reduced form model as regards the dynamic features of the modelled choices. Indeed, we 
hypothesize that random parameters iγ  capture the effects on farmers’ production choices 

and performances of the stable crop rotation schemes that these farmers rely on.10 Koutchadé 
et al (2018) provide empirical results confirming this hypothesis with a sample of arable crop 
producers located in an area contiguous to the one considered in our application. 

Finally, we assume that the error term vectors yx
itε , s

itε  and ite  are independent. Relaxing 

this independence assumption for s
itε   and yx

itε  is possible but significantly increases the 

estimation burden  and Koutchadé et al (2018), in a similar context, found that error terms 
s
itε  and yx

itε  were not significantly correlated.  

2.4.2. Distributional assumptions 

Random parameter vectors iγ   are assumed independent across farms. For sake of 

simplification, we assume here that these random parameter vectors are normally distributed, 
with 0 0( , )iγ μ Ω: N  . Various transformations of elements of iγ   actually allow for other 

distribution choices for these elements while keeping the multivariate structure of the 
probability distribution of iγ   (e.g., Stanfield et al, 1996). For example, considering log-

transformations of iα   and is   in iγ   implies that these random parameters, which are 

required to be positive, are jointly log-normality distributed. We used this log-transformation 
in the ESR-MEMC model used for our empirical application. Robustness checks demonstrated 
that other probability distribution choices have a limited impact on the main results.11 

We make the usual assumptions stating that error term vectors itε  are independent across 

farms (and years) and normally distributed, with 0( , )itε 0 Ψ: N .12 

Finally, we assume that the regime choice model error terms ,r ite  are independent across 

regimes and distributed according to a type I extreme value distribution. This assumption 
implies that the considered regime choice model is a standard Multinomial Logit discrete 
choice model conditionally on the scale parameter and on the regime specific expected profit 
levels and fixed costs. The corresponding conditional probability of the observed the regime 
choices is given by: 

 

10 In that, we rely on well-known features of heterogeneous dynamic processes: those implying that empirically 
disentangling the effects of unobserved heterogeneity from those of unobserved persistent dynamic features is 
notably difficult. Accounting for dynamic features of multi-crop production technologies and of farmers’ choices 
is challenging, and largely beyond the scope of this article. 

11 We tested specifications assuming that iβ  is log-normally distributed and/or that iα  follows a bounded 

Johnson distribution (e.g., Stanfield et al, 1996). 

12 Matrix 0Ψ  is block-diagonal under the assumption stating that s
itε  and yx

itε  are independent. 
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(13) 
( )

( )
0

exp ( ( ) ( ))
( | , , ; )

exp ( ( ) ( ))
i it it i its

it it it i

i it ir

r d r
P r

r d r

s

s
Î

P -
=

P -å
ε z γ δ

R

. 

This probability is defined as a function of 0( , , ; )s
it it iε z γ δ  because the vector of regime specific 

expected profit levels, ( ) ( )it ir d rP -   for r Î R  , is a function of all the terms contained in 

0( , , ; )s
it it iε z γ δ , scale parameter is  excepted. 

2.4.3. Identification 

We consider here identification of the probability distribution of main random parameters of 
interest: the production choice flexibility parameters and the parameters of the regime choice 
model. 

Under the considered assumptions the probability distribution of farmers’ responses to 
economic incentives, iα  , are identified through two main channels. Identification of the 

probability distribution of the variable input use flexibility parameters, ,
x
k ia  for k Î K , mostly 

relies on the variations of the corresponding input to crop price ratios. Identification of the 

probability distribution of the acreage choice flexibility parameters, s
ia  and ( ),

s
g ia  for g Î G , 

mainly relies on the variations of the expected crop return terms, ,k itp  for k Î K . Importantly, 

the expected crop returns are defined as functions of random parameters (i.e., ,
y
k ib , ,

x
k ib  and 

,
x
k ia   for k Î K  ) that may be correlated with the acreage choice flexibility parameters. The 

“full” variance-covariance matrix of the joint probability distribution of the random 
parameters iγ  takes into account these potential correlations.  

Scale parameter is  , which is the random coefficient associated to the regime specific 

expected profit levels ( )it rP  in the regime choice model, is mainly identified by the variations 

in these variables. Crop fixed costs ,
c
k ib   are entailed in the regime fixed costs 

,( )
( ) c

i k ik r
d r b+Î

= å K
. Importantly, the fixed costs of the crops that are always produced cannot 

be identified because these crops are part of any regime present in the data. Therefore, the 
fixed costs of these crops are normalized at zero. The joint probability distribution of the 
identifiable crop fixed cost vector is mainly identified by the variations in the differences in 
the regime specific expected profit levels ( )it rP  across the production regimes. The potential 

correlations between, on the one hand, the random parameters that are part of the expected 
profit levels and, on the other hand, the crop fixed costs and the scale parameter are taken 
into account in the distribution of iγ .  

2.4.4. Estimation issues and sketch of the estimation procedure 

The considered ERS-MCEM model being fully parametric, we consider a Maximum Likelihood 
(ML) estimator for efficiently estimating its parameters. These parameters are collected in 

0 0 0 0 0( , , , )=θ δ Ψ μ Ω  . Contribution of farmer i to the likelihood function of the model 

corresponds to the probability density function (pdf) of her/his sequence of production 
choices conditional on the sequence of exogenous variables characterizing this choice 
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sequence. Assuming that the considered pdf is parameterized by η  , let function ( | ; )f u v η  

generically denotes the pdf of itu  conditional on it =v v  at it =u u . And let function ( ; )j u Ω  

denote the pdf of ( , )0 ΩN  at u. Given the probabilistic assumptions defining the parametric 

version of the random parameter ERS-MEMC model, contribution of farmer i to the likelihood 
function at θ  is given by: 

(14) ( )1
( ) ( , , , | , ; , ) ( ; )

T

i it it it it itt
f r dj+ + +

=
= -Õòθ y x s z γ δ Ψ γ μ Ω γl . 

Likelihood function ( )i θl   can be obtained neither analytically nor numerically due to its 

integration over the probability distribution of the random parameters iγ  . 

Micro-econometricians generally solve this problem by integrating ( )i θl   via direct 

simulation methods for computing Simulated ML (SML) estimators of 0θ . Yet, implementing 

this approach is particularly challenging with ERS-MEMC models due to the dimension of 
parameter 0θ  and the complexity of the simulated version of the likelihood functions ( )i θl . 

For instance, the ERS-MEMC model of our empirical application considers 22 production 
choices. It features 80 control variables, 37 random parameters and 20 error terms. Vector 0θ  

contains 786 parameters while our dataset describes 40,192 observed production choices 
(16.5 per observation on average). 

Integration of ( )i θl  over the random parameter distribution is thus the first estimation issue 

that we have to deal with. We compute the ML estimator of 0θ   by devising a Stochastic 

Approximate Expectation-Maximization (SAEM) algorithm. SAEM algorithms were proposed 
by Delyon et al (1999) for computing ML estimators of models featuring continuous random 
parameters. These algorithms rely on simulation methods for integrating proxies of the 
sample log-likelihood of the considered model. They appear to use simulations more 
efficiently than competing alternatives (e.g., McLachlan and Krishnan, 2007; Lavielle, 2014), 
which is a particularly relevant property when considering large samples, large multivariate 
models and/or large random parameter vectors. The structure of the SAEM algorithm that we 
propose for estimating random parameter ERS-MEMC models is described in ppendix 2A. 
Here, we consider its main step, the Maximization (M) step. This allows us to demonstrate the 
main advantages of our approach and, in the sequel, to illustrate the other two main 
estimation issues that we face. 

At each of its iteration, the considered SAEM algorithm solves two maximization problems 
for updating estimates of 0θ . These problems have the form of weighted ML problems that 

are much simpler to solve than the corresponding SML problem. The first problem to be solved 
in the M step of our SAEM algorithm aims at updating the estimated value of 0 0( , )μ Ω , the 

parameter of the pdf of the model random parameters. It is of the form: 

(15) ( , ) 1 1
max ln ( ; )

N J j i
i ii j

h j
= =

-å åμ Ω γ μ Ω%%  

where terms j
iγ%  are random draws of iγ  from a pdf defined by the preceding iteration results 

and j
ih%   are weighting terms attached to these draws. The solution in μ   is the empirical 

weighted mean of the random draws j
iγ%  while the solution in Ω  is their empirical weighted 
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variance-covariance matrix.  

The second part of the M step of our SAEM algorithm updates the estimate of 0 0( , )δ Ψ . It 

considers functions of the form 
1 1 1

( , ) ln ( , | , ; , )
T N J j j

i it it it it i j
W f rh +

= = =
= å å åδ Ψ w z γ δ Ψ% %%   where 

( , , )it it it it
+ + + +=w y x s  . These functions have the functional forms of a weighted log-likelihood 

function of the production choices of a sample of “simulated farmers”. Assuming that ˆ ˆ( , )δ Ψ  

is the preceding iteration estimate of 0 0( , )δ Ψ , it consists of solving either of the two following 

problems (a) ( , )max ( , )Wδ Ψ δ Ψ%   or (b) find ( , )δ Ψ   such that ˆ ˆ( , ) ( , )W W³δ Ψ δ Ψ% %  . Unfortunately, 

solving problem (a) or even simpler search problem (b) is difficult due to the complexity of the 

conditional likelihood function ( , | , ; , )it it itf r+w z γ δ Ψ . 

Decomposing this function demonstrate that the problem is indeed twofold. Using Bayes’s law 
and the structure and distributional assumptions of the ERS-MCEM model, we obtain: 

(16) ( , | , ; , ) ( | , , ; , ) ( | , ; , )it it it it it it it itf r P r f+ + +=w z γ δ Ψ s z γ δ Ψ w z γ δ Ψ , 

Vector it
+s   collects the acreage shares of the crops produced in regime itr  . 13  Function 

( | , ; , )it itf +w z γ δ Ψ  is the likelihood of crop level choice vector it
+w  conditional on ( , )it i =z γ γ  

and ( | , , ; , )it it itP r +s z γ δ Ψ  is the probability function of regime itr  conditional on ( , , )it it i
+ =s z γ γ . 

Yet, both functions raise estimation issues. 

Given the structure of our MEMC model, function ln ( | , ; , )it itf +w z γ δ Ψ   is the likelihood 

function of a Gaussian Seemingly Unrelated Regression (SUR) system with observations 
missing at random (up an additive term that doesn’t depend on ( , )δ Ψ  ). The missing 

observations are the yield level, input use and acreage share of the crops that are not 
produced in regime itr  . Ruud (1991) discussed the use of Expectation-Maximization (EM) 

algorithms for alleviating the computation burden of ML estimators of models based on latent 
Gaussian SUR systems with missing observations. Based on Ruud’s insights we devised an EM 
type approach for updating the estimates of 0 0( , )δ Ψ  in the M step of our SAEM algorithm. 

Our last main estimation issue is due to the computation of the regime choice probability 

function ( | , , ; , )it it itP r +s z γ δ Ψ . Given the structure of our MEMC model, this probability function 

can be defined as a function of the error terms of the acreage share equations. Let vector ,s
it

+ε  

collect the error terms of the acreage share models of the crops produced in regime itr  and 

vector ,0s
itε   collect those of the crops that are not produced. Vector ,s

it
+ε   can be recovered 

from the acreage share model and the data, the observed crop acreages of the produced crops 

in particular. Let function ,ˆ ( , )s
it

+ε γ δ  denote the residual function corresponding to error term 

 

13 Yield supply and input demand levels, ( , )it it
+ +y x , and regime choices, itr , are independent conditionally on 

acreage choices, exogenous variables and random parameters, ( , , )it it i
+ =s z γ γ , since error terms ( , )y x

it itε ε , s
itε  

and ite  are assumed to be mutually independent. 
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,s
it

+ε . The structure of our MEMC model and equation (13) yield: 

(17) ( ),0 , ,0ˆ( | , , ; , ) ( | , , ; ) | ( , ); ,s s s s
it it it it it it it it itP r P r f d+ += òs z γ δ Ψ γ z ε δ ε ε γ δ δ Ψ ε  

where ,0 ,
0 0

ˆ( | ; , )s s
itf +ε ε δ Ψ  denotes the pdf of ,0s

itε  conditional on , ,ˆs s
it

+ +=ε ε , which is normal. 

Vector ,0s
itε   must be considered as missing variables in the estimation process because it 

cannot be recovered by combining the model and the data. The Multinomial Logit functional 

form of function ( | , , ; )s
it it itP r γ z ε δ  prevents its integration over the probability distribution of 

,0s
itε , either analytically or numerically. Building on the work of Harding and Hausman (2007), 

we use Laplace approximates of the regime choice probability functions ( | , , ; , )it it itP r +s z γ δ Ψ  

for computing the likelihood function of our model.14  

The fact that production regime choices and acreage choices depend on s
itε  constitutes the 

first source of endogeneity of the regime choices in our ERS-MEMC model. 15  Random 
parameter iγ  constitutes a supplementary source of regime choice endogeneity in our ERS-

MEMC model.  

2.5. Empirical application: crop diversification of French arable crop 
producers 

This section presents an application aimed to illustrate the empirical tractability of our 
modelling approach as well as to demonstrate the role of crop set choices in analyzes of 
farmers’ production choices. 

2.5.1. Data and model specification details 

The model is estimated on an unbalanced panel data set containing 2276 observations of 415 
French grain crop producers in the North and North-East of France, over the years 2006 to 
2011. This sample has been extracted from data provided by an accounting agency located in 
the French territorial division La Marne. It contains detailed information about crop 
production for each farm (acreages, yields, input uses and crop prices at the farm gate). We 
consider seven crops: sugar beet, alfalfa, protein pea, rapeseed, winter wheat, corn and spring 
barley, which represent more than 80% of the total acreage in the considered area.16 

The variable input aggregate accounts for the use of fertilizers, pesticides and seeds. The 
corresponding price index is computed as a standard Tornqvist index. When a farmer doesn’t 

 

14 This approach relies on a second order Taylor expansion in ,0s
itε  of function ( ),0 ,ˆ( | , , ; ) | ( , ); ,

s s s

it it it it it
P r f

+

γ z ε δ ε ε γ δ δ Ψ  

around an optimally chosen value of ,0s
itε . Using simulation methods for integrating function ( | , , ; , )

it it it
P r

+

s z γ δ Ψ  

would be inconvenient in our case due to our using such methods for dealing with random parameters. 

15 Indeed, the endogeneity issues raised by s
itε  in our ERS-MEMC model are analogous, from an econometric 

viewpoint, to those raised by the demand function error terms in demand systems with binding non-negativity 
constraints (e.g., Wales and Woodland, 1983; Lee and Pitt; 1986). 

16 The EU sugar beet subsidy scheme requires limited adjustments in our application because the actual sugar 
beet production largely exceeds the subsidized quota for all sugar beet producers of our sample. 
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produce a crop the corresponding output and input prices are unobserved. These missing 
prices were approximated by the yearly average of the corresponding observed prices. All 
prices are deflated by the hired production services price index (base 1 in 2006) obtained from 
the French department of Agriculture. This aggregated price index mainly depends on the 
price indices of machinery, fuel and hired labor, the main inputs involved in the implicit 
acreage management cost function. Climatic variables are provided at the municipality level 
by Météo France, the French national meteorological service. 

Farmers’ crop price expectations are defined by the corresponding lagged prices, according 
to a naïve anticipation scheme. Robustness checks demonstrate that anticipation scheme 
choices mostly impact estimates of the probability distribution of input use flexibility 

parameters ,
x
k ia , with very limited effects on our main results. 

Figure 2 depicts the three levels nesting structure that we adopt for the seven crops. In a first 
level we distinguish a cereal group composed of wheat, corn and barley, and a group of 
rotation entry crops: sugar beet, alfalfa, peas and rapeseed. This structure is intended to 
reflect the basic rotation scheme of grain and industrial crop producers in France. In a second 
level, the cereal group is split into two subgroups: winter cereals on the one hand and spring 
cereals on the other hand, in order to account for the differences in planting seasons. The 
‘rotation entry crop’ group is split into an ‘oilseeds and protein crops’ subgroup and a 
subgroup including only sugar beet (the only root crop considered here). Wheat, which is the 
only winter cereal, is used as the benchmark crop. Based on these seven crops, 127 regimes 
could theoretically be chosen by farmers. The 8 most frequently observed regimes, out of 78 
regimes present in the original dataset, were considered for selecting our estimation 
sample.17 

  

 

17 Considering a small regime set allowed us to estimate our ERS-MEMC model with regime specific fixed costs 
that are not defined as sums of crop fixed costs. This specification of the regime fixed costs is more flexible but 
only yields a modest improvement in the fit performance of the regime choice model. 
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Figure 2. Nesting structure of the acreage choice model 

All farmers grow winter cereals, (spring) barley, (winter) rapeseed and most of them (91.7%) 
grow at least two additional crops. The most frequent regimes in the sample (regimes 2, 3 and 
4) include five or six crops. Table 1 provides descriptive statistics concerning the production 
regimes observed in the data. Most farmers adopt different production regimes over the 6 
years of our sample: only  

8 out of 415 farmers have not changed their production regime. The average gross margins 
associated to each regime are reported in the last column of Table 1. An interesting feature 
appears here: the most frequently chosen regimes are not the ones that lead to the highest 
average gross margin per hectare. For instance, regime 2 – which excludes corn – is 
characterized by the highest observed gross margin on average, but has been adopted in only 
21.5% of the observations. This comes to illustrate the fact that farmers’ choices of production 
regime are driven by factors other than gross returns, such as the acreage management and 
regime fixed costs represented in our model. 

Because we assume that regime costs are equal to a sum of fixed costs associated to each 
crop produced in the considered regime, the fixed costs associated to winter cereals, spring 
barley and rapeseed, which are always produced in our sample, are set to zero for 
normalization purpose. Interestingly, our data configuration illustrates an important 
advantage of this regime fixed cost specification. According to Table 1, the less frequently 
produced crop (i.e., corn) is produced in at least 24% of our observations while 3 production 
regimes (i.e., regimes 5, 6 and 8) out of 8 are adopted in less than 3% of our observations. The 
probability distribution of fixed costs cannot be estimated accurately with our dataset on a 
pure per regime basis. But, that of crop fixed costs can be. 
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Table 1. Descriptibe statistics 

2.5.1. b
r 

Regime Number 

Average crops acreage shares per regime 
Regime 

frequency 

Average 
gross margin 

(€/ha)b 

Winter 
wheat 

Corn 
Spring 
Barley 

Sugarbeet Alfalfa 
Protein 

pea 
Rapeseed 

  

1 0.38 0.07 0.15 0.12 0.09 0.06 0.13 6.6% 953 

2 0.37  0.16 0.15 0.11 0.06 0.15 21.5% 1014 

3 0.38 0.07 0.17 0.14 0.10  0.14 11.8% 930 

4 0.37  0.20 0.16 0.11  0.16 48.6% 1007 

5 0.41 0.14 0.19 0.10   0.15 2.8% 989 

6 0.50 0.14 0.14    0.22 2.5% 825 

7 0.44  0.23 0.14   0.19 4.9% 970 

8 0.58  0.15    0.27 1.3% 738 

Production frequency 100% 24% 100% 96% 88% 28% 100%   

Average acreage sharea 
0.38 

(0.09) 

0.02 

(0.05) 

0.18 

(0.07) 

0.15 

(0.06) 

0.10 

(0.05) 

0.02 

(0.03) 

0.16 

(0.06) 
 

 

Average acreage sharea if 
produceda 

0.38 

(0.09) 

0.08 

(0.07) 

0.18 

(0.07) 

0.15 

(0.06) 

0.11 

(0.04) 

0.06 

(0.03) 

0.16 

(0.06) 
 

 

Average gross margin (€/ha)a,b 
843 

(327) 

872 

(449) 

756 

(287) 

1789d 

(379) 

562 

(286) 

663 

(269) 

843 

(311) 
 

 

Average yield (t/ha)a 8.58b 9.23 6.82 95.19 12.62 4.72 3.89   
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(0.88) (1.73) (1.21) (13.01) (1.92) (1.28) (0.64) 

Average price (€/t)a 
149b 

(31) 

131 

(34) 

155 

(35) 

25c 

(3) 

72 

(15) 

198 

(25) 

323 

(64) 
 

 

Average fertilization and crop 
protection costsa 

431 

(91) 

308 

(74) 

294 

(70) 

547 

(126) 

350 

(125) 

246 

(66) 

415 

(83) 
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2.5.2. Estimation results 

The parameter estimates of the yield, input demand, acreage shares and regime choice 
equations are reported in Tables 2 to 4. As shown in Table 2, the expectations of random 

parameters representing potential yields, ,
y
k ib , are precisely estimated for all crops and their 

values lie in reasonable ranges regarding the average yields observed in the sample (Table 1). 
More importantly, the variances of their distributions are also statistically different from zero 
for all crops. These parameters thus significantly vary across farms, despite the fact that we 
control for observed factors characterizing farm heterogeneity (land and capital endowments 
and climatic conditions). This comes to illustrate the importance of unobserved farm 
heterogeneity in our sample. 

The parameter estimates of the input demand equations, also reported in Table 2, confirm 
this result: the probability distribution of their farm specific parameters is precisely estimated 

and displays significant heterogeneity. This is true for the random intercepts ,
x
k ib  (the input 

use requirement) but also for the random slope parameters, ,
x
k ia    which represents the 

response of farmers to change in netput prices. 

Turning to the parameter estimates of the acreage share equations in Table 3, again, the 
expectations and variance of random parameters are precisely estimated. Ranges of 
expectations of the acreage flexibility parameters are theoretically consistent. Conditions 

|(g), (g), 0s s s
m i i ia a a³ ³ >  hold on average. These are sufficient conditions for the acreage model 

to be well-behaved. 

Finally, as shown in Table 4, the regime costs associated to crops, ,
c
k id  , and the scale 

parameter, is , of the regime choice equation are significantly estimated and heterogeneous 

across the sample. The mean value of the scale parameter, 1.80, is large, reflecting the 
importance of regime profit and fixed cost levels in production regime choices. Simulation 
results provided in the next sub-section illustrate this point. Estimated mean fixed cost of 
alfalfa is negative on average. Two main reasons might explain this result. First, alfalfa is 
planted for at least two years. This crop requires farmers’ intervention mostly at planting and 
harvesting. In the Marne region, the alfalfa downstream (dehydration) industry generally 
takes on harvest operations, which comes to decrease farmers’ workload significantly. Second, 
being a legume alfalfa exhibits good agronomic properties, especially when used as a previous 
crop for cereals. Crop fixed cost estimates should, however, be considered cautiously given 
their high variability across farms. 
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Table 2. Selected Parameter Estimates of Yield Supply and Input demand Modelsa 

2.5.1.  
Winter 
wheat 

Corn Spring 
Barley 

Sugar 
beet 

Alfalfa Protein 
pea 

Rape-
seed 

Yield supply model  

Error term ,
y
k ite   

 
  

Std dev 0.66* 

(0.02) 

1.83* 

(0.07) 

0.95* 

(0.02) 

9.70* 

(0.02) 

2.96* 

(0.02) 

1.72* 

(0.03) 

0.49* 

(0.016) 

Potential yield 
,

y
k ib   

Mean 8.71* 

(0.02) 

9.06* 

(0.04) 

6.81* 

(0.02) 

95.60* 

(0.32) 

12.23* 

(0.04) 

4.15* 

(0.03) 

4.04* 

(0.01) 

Std dev 0.26* 

(0.01) 

0.65* 

(0.03) 

0.33* 

(0.01) 

5.7* 

(0.17) 

0.69* 

(0.02) 

0.51* 

(0.02) 

0.24* 

(0.01) 

Input demand model       

Error term ,
x
k ite          

Standard deviation 
0.52* 

(0.01) 

0.59* 

(0.02) 

0.41* 

(0.01) 

0.84* 

(0.02) 

0.88* 

(0.02) 

0.60* 

(0.02) 

0.58* 

(0.01) 

Input requirement 
,

x
k ib        

Mean 
4.36* 

(0.02) 

2.57* 

(0.02) 

2.92* 

(0.01) 

5.44* 

(0.03) 

3.15* 

(0.03) 

2.29* 

(0.02) 

4.44* 

(0.02) 

Standard deviation 
0.37* 

(0.02) 

0.33* 

(0.01) 

0.24* 

(0.01) 

0.54* 

(0.02) 

0.44* 

(0.01) 

0.37* 

(0.01) 

0.41* 

(0.02) 

Input use flexibility 
,

x
k ia          

Mean 0.43* 

(0.01) 

0.08* 

(0.00) 

0.30* 

(0.00) 

0.49* 

(0.03) 

0.25* 

(0.00) 

0.33* 

(0.01) 

0.79* 

(0.02) 

Std dev 0.13* 

(0.01) 

0.09* 

(0.04) 

0.05* 

(0.00) 

0.58* 

(0.06) 

0.02 

(0.03) 

0.18* 

(0.01) 

0.31* 

(0.01) 

a. Estimated standard errors of the ML estimator are in parentheses.  Note: Asterisk (*) denotes a statistically 
significant parameter at the 5% level. 
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Table 3. Selected Parameter Estimates of the Acreage Share Modelsa 

C 

Crop level random terms 

Winter 
wheat 

Corn 
Spring 
barley 

Sugar 
beet 

Alfalfa 
Protein 

pea 

Rape- 

-seed 

Error term ,
s
k ite           

Standard deviation 0 
11.12* 

(0.38) 

9.91* 

(0.19) 

6.25* 

(0.13) 

6.77* 

(0.15) 

8.56* 

(0.28) 

7.09* 

(0.16) 

Acreage share shifters
,

s
k ib

 
  

Mean 0 
17.41* 

(0.73) 

13.88* 

(0.37) 

24.51* 

(0.23) 

11.15* 

(0.24) 

18.78* 

(0.37) 

11.07* 

(0.24) 

Standard deviation 0 
3.92* 

(0.02) 

4.19* 

(0.02) 

3.96* 

(0.03) 

2.70* 

(0.06) 

2.62* 

(0.01) 

2.20* 

(0.01) 

Acreage choice flexibility 
parameters 

Level 1 

s
ia  

Level 2 (groups) 

 
( ),
s
g ia  

Level 3 (subgroups) 

 
|( ),

s
n g ia  

  Cereals Rotation 

heads 

Spring 

cereals 

Oil and 

protein crops  

Mean 
0.046* 

(0.001)
 

0.053* 

(0.001)
 

0.073* 

(0.001)
 

0.530* 

(0.029)
 

0.11* 

(0.002)
 

Standard deviation 
0.015* 

(0.001) 

0.013* 

(0.001) 

0.025* 

(0.001) 

0.640* 

(0.029) 

0.020* 

(0.002) 

a. Estimated standard errors of the ML estimator are in parentheses. Note: Asterisk (*) denotes a 
statistically significant parameter at the 5% level. 

 

Table 4. Parameter Estimates of Regime Choice Models 

2.5.1.  
Crop fixed costs ,

c
k ib  

Scale 

parameter is  
 

Winter 
wheat 

Corn 
Spring 
barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

-seed 

Meana 0 
3.80* 

(0.24) 
0 

0.30* 

(0.12) 

-4.70* 

(0.28) 

1.30* 

(0.04) 
0 

1.80* 

(0.07) 

Std deva 0 
4.16* 

(0.10) 
0 

2.22* 

(0.05) 

4.40* 

(0.11) 

0.67* 

(0.01) 
0 

1.40* 

(0.07) 

a. Estimated standard deviation of the estimator in parentheses. Note: Asterisk (*) denotes a statistically non 
null parameter at the 5% level.  
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Once we have estimated the parameters characterizing the distribution of the random 

parameters iγ , we can “statistically calibrate” those parameters for each farmer in our sample 

and thus obtain a set of farmer specific “calibrated” models that can then be used for 
simulation purposes (Koutchadé et al, 2018). In this study, the specific parameter iγ  of farm i 

is calibrated as the mode of its (simulated) probability distribution conditional on 

( , , , , )it it it it itr+ + +y x s z  for 1,...,t T=  (i.e. according to a ML ‘calibration’ criterion conditionally on 

what is known about farm i in the data). One interesting feature is that this procedure also 
allows us to calibrate the parameters of the yield, input demand and acreage equations 
corresponding to crops that have not been grown by the considered farmer as well as farmer 
specific regime fixed costs for regimes that have never been chosen by the considered farmer. 

The estimated farmer specific models allow us to compute fitting criteria, Sim-R², which are 
reported in Table 5. The Sim-R² criterion measures the quality of the prediction of the 
observed choices of farmers by the estimated models. Its construction is analogous to that of 
the R2 criterion of the standard linear regression model: for a given choice variable and a given 
model, the Sim-R2 criterion is defined as the ratio of the empirical variance of the prediction 
of this variable to the empirical variance of the observed variable. 

Table 5. Fitting Criteria (Sim-R²) 

 
Winter 
wheat 

Corn 
Spring 
barley 

Sugar 

beet 
Alfalfa Peas 

Rape- 

-seed 

Yield supply models 0.37 0.24 0.35 0.42 0.28 0.39 0.45 

Input demand models 0.44 0.30 0.40 0.34 0.30 0.43 0.40 

Acreage share models  0.57 0.34 0.83 0.70 0.53 0.41 

These estimated criteria tend to show that the proposed model offers a satisfactory fit to our 
data.18 Using the estimated farmer specific models to predict the regime choices observed in 
our data, we find our model to exhibit a relatively good predictive power with 72.4% of regime 
choices correctly predicted. Importantly, our investigations on this issue tend to demonstrate 
that our results are robust to various distributional assumptions related to the model random 
parameters. 

2.5.2. Simulation results 

The structure of the proposed ERS multi-crop micro-econometric model allows to investigate 
the relative importance of the main drivers of production regime choices. For that purpose, 
we consider the simulation model obtained from the estimated one by calibrating the farm 
specific parameters for each farm of our sample. Then we use this simulation model for 
investigating the prediction power of three elements of the regime choice models: the 
weighted sum of the expected crop gross returns ( )it it r¢π s  , the acreage management costs 

 

18 Much better fit levels are obtained for crop supply, acreage and input demand model defined at the farm level, 
mostly due to the explanatory power of the cropland area variable. 
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( )( )it itC rs  and the regime fixed costs r
id  for r Î R . We simulate the regime choices according 

to each of these elements as well as combinations of these elements, and then confront them, 
on average, with the observed regime choices. Taken together these simulation results 
confirm that regime fixed costs matter, but mainly in combination with the other drivers of 
the regime choice model. The maximization of gross margins, or the minimization of acreage 
management costs or regime fixed cost alone leads to predictions of regime choices that are 
strongly biased on average. Considering pairs of these choice criteria only slightly improve the 
predictions, while considering together these three criteria unsurprisingly provides predicted 
choices very close, on average, to the observed ones. 

To illustrate the relevance of the approach we propose to deal with corner solutions in acreage 
choices, we simulate the impacts of changes in expected crop prices on acreage choices. As 
acreage price elasticities play a crucial role in this type of exercise, we present them first. In 
our ERS-MEMC model these elasticities account for the impact of crop prices on both acreages 
within any given regime and switch in production regimes. These two effects can be 
distinguished by generalizing, to a multiple regime case, the decomposition proposed by 
McDonald and Moffit (1980) for standard Tobit models. The average acreage own price 
elasticities of our farm sample are reported in Table 6. They have expected signs and, because 
of the crop disaggregation level of our data, are larger than those commonly found in the 
literature. The decomposition of these elasticities shows that a large part of the price effects 
on acreages can be due to the inclusion or not of these crops in the production regimes chosen 
by farmers. For crops like corn or pea, which are minor crops in the considered area, changes 
in the production regimes account for about one third of the estimated price elasticities. 
However, changes in the production regimes can also have significant effects for frequently 
produced crops. For instance, they account for 11% of the sugar beet acreage own price 
elasticities. 

Table 6. Average Own Price Elasticities of Crop Acreages 

 Winter 
wheat 

Corn 
Spring 
barley 

Sugar 

beet 
Alfalfa 

Protein 
pea 

Rape- 

-seed 

Average crop acreage own 
price elasticities 

0.33 4.26 0.44 1.39 0.74 1.22 0.76 

Due to changes in 
acreages within 

production regimes 

0.33 

(100%) 

2.33 

(55%) 

0.43 

(98%) 

1.24 

(89%) 

0.60 

(81%) 

0.71 

(58%) 

0.75 

(99%) 

Due to changes in 
production regimes 

0.00 

(0%) 

1.93 

(45%) 

0.01 

(2%) 

0.15 

(11%) 

0.14 

(19%) 

0.51 

(42%) 

0.01 

(1%) 

Observing how crop acreage elasticities within production regimes vary across regimes allows 
to illustrate the main features distinguishing ERS-MEMC models from their CR-MEMC 
counterparts. Table 7 reports the estimated means of own price crop acreage elasticities per 
regime.  
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Table 7. Per Regime Average Own Price Crop Acreage Elasticities 

 Regime  Crops produced in the regime 

Number Frequency 
Crop 

number 
Winter 
wheat 

Corn 
Spring 
barley 

Sugar 
beet 

Alfalfa Peas 
Rape- 

-seed 

1 6.6% 7 0.33 0.95 0.92 1.19 0.62 0.68 0.84 

2 21.5% 
6 

0.31  0.32 1.17 0.61 0.67 0.82 

3 11.8% 0.32 0.95 0.92 1.16 0.57  0.75 

4 48.6% 
5 

0.30  0.32 1.14 0.56  0.74 

5 2.8% 0.31 0.95 0.90 1.10   0.44 

6 2.5% 
4 

0.29 0.95 0.90    0.35 

7 4.9% 0.29  0.31 1.10   0.43 

8 1.3% 3 0.27  0.30    0.30 

These estimates display significant differences across production regimes. In particular, crop 
acreage own price elasticities grow with the number of crops produced in the considered 
production regime. The higher the crop number, the more farmers can make use of crop 
acreage substitution opportunities. For instance, the more the considered regime contains 
rotation starting crops, the more rapeseed acreage choices are responsive to rapeseed price. 
This elasticity range, on average, from 0.30, when rapeseed is the only rotation starting crop 
in the regime, to 0.84, in regimes with 4 rotation entry crops. Similarly, barley acreages are 
much more responsive to changes in barley price in regimes including corn than in regimes 
without corn. Corn and barley are the only spring cereals in farmers’ crop set. Crop acreage 
models of CR-MEMC models cannot represent the substitution patterns uncovered by our 
estimation results. These models account for crop regimes but consider the same crop 
acreage model for all production regimes. 

The impact of the production regime choice is further highlighted by simulating the effects of 
increases in the price of protein pea on its acreages. Owing to its fixing atmospheric nitrogen 
for themselves as well as for following crops, French agricultural scientists consider pea as a 
“diversification crop” of particular interest by. Yet, protein pea acreages have declined over 
the last decade in the considered area mostly because of lacking profitability, especially as 
regards to that of other rotation starting crops. The simulated impacts of increases in the price 
of peas on crop acreages are depicted in Figure 3.  
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Figure 3. Estimated impacts of protein pea expected price on crop acreage shares 

 

According to our results, a 40% increase in the expected price of pea would increase the 
average pea acreage share by 1.3%, from 2.0% to 3.3%. These additional pea acreages would 
mainly replace those of other rotation starting crops. The combined average acreage share of 
rapeseed, alfalfa and sugar beet would decrease by 0.9% while that of cereals would only 
decrease by 0.4%. This illustrates the interest in considering crop – agronomic and 
management – characteristics when specifying the acreage management cost function. 
Interestingly, about two thirds of the increase in the pea acreage would be due to new 
producers. This also explains another feature of our simulation results. The simulated 
increases in the pea acreage is not linear in the price of pea. In particular, the increase in the 
pea acreages is more pronounced above the 20% price increase level than below. Threshold 
effects due to production regime fixed costs and changes in crop acreage elasticities due to 
regime changes can explain this pattern. These induce kinks in farmers’ pea acreage choices 
that are smoothed by the averaging process. 

2.6. Conclusion 

The main aims of this article are threefold. First, we present an original modelling framework 
for dealing with null acreages in MEMC models. This framework is fully consistent from an 
economic viewpoint and explicitly considers regime fixed costs. These features make the ERS-
MEMC model proposed in this article suitable for analyzing and, to some extent, 
disentangling, the effects of the main drivers of farmers’ acreage choices at disaggregation 
levels at which issues raised by null acreages are pervasive. Our estimation and simulation 
results notably tend to demonstrate that expected crop returns are not the sole significant 
drivers of farmers’ crop acreage choices, at least in the short run. In particular, crop production 
fixed costs also matter. These results also show that crop acreages display patterns that cannot 
be accounted for by the CR-MCEM models currently used for handling null acreage choices. 
Effects of economic incentives on the crop acreage choices of a farmer strongly depend on 
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the crop set chosen by the considered farmer. 

Second, the application presented in this article illustrates the empirical tractability of 
random parameter ERS-MEMC models for investigating farmers’ production choices. Of 
course, estimating such models raises challenging issues. But, this is also necessary for 
estimating structured micro-econometric models suitably accounting for important features 
characterizing micro-economic agricultural production data, among which significant 
unobserved heterogeneity. In particular, to estimate such models enables analysts to calibrate 
simulation models consisting of samples of farm specific models. 

Third, according to our experience, ML estimators computed with stochastic versions of 
EM algorithms appear to be interesting alternatives to Simulated ML estimators for relatively 
large systems of interrelated equations such as the random parameter ERS-MEMC models 
considered in our empirical application. SAEM algorithms appear to be particularly relevant. 

Of course, significant specification and estimation issues remain to be addressed. First, the 
empirical tractability of the ERS-MEMC model proposed in this article strongly relies on 
properties that are specific to the MNL crop acreage share models proposed by Carpentier 
and Letort (2014). Adapting our modelling approach to other crop acreage choice models 
would widen the scope of specification search for ERS-MEMC models. Also, the ERS-MEMC 
model considered in our empirical application relies on restrictive assumptions regarding the 
dynamic features of multi-crop technologies and farmers’ choice process. Finally, the 
estimation cost of the models proposed in this article is relatively high, due to long computing 
and coding times. 

This article proposes solutions to methodological issues that could be used for improving 
micro-econometric analyzes of policies impacting crop acreage choices. For instance, Babcock 
(2015) noted that policies related to biofuels led to a dramatic increase in interest in the 
econometric analyses of crop supply response to crop prices. The ERS-MEMC models 
considered in this article not only allow to disentangle intensive and extensive margin effects, 
they also allow to investigate crop choice effects. Analyzing crop choices also appear crucial 
for investigating agri-environmental policies and issues. For instance, changes in the location 
of crop production induced by climate change are due to crop set choices made the farm level. 
Also, as fostering crop diversification tend to become an important agri-environmental 
objective in many countries, including those of the European Union, coherent model of 
farmers’ crop set choices appear to be especially relevant. Finally, random parameter ERS-
MEMC models can contribute to close the gap existing between MEMC models and 
mathematical programming models (e.g., Heckeleï et al, 2012; Mérel and Howitt, 2014). The 
overall structure of our ERS-MEMC models is similar to that of mathematical programming 
models and their random parameter versions can be used for calibrating heterogeneous farm 
models. 

Estimation costs appears to be among the limitations of our modelling framework that need 
to be addressed. Significant computing and coding costs make applied research work, such as 
specification search, tedious and time consuming. Relatively slight modifications of the model 
specification could, however, significantly reduce the estimation cost of the ERS-MEMC model 
presented in this article. For instance, in the model considered in the empirical application the 
covariance parameters of the random parameter vector iγ  represent more than 64% of the 
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(786) estimated parameters. Yet, our estimates demonstrate that the random parameters of 
the crop yield supply and input demand models are strongly correlated, for a given crop but 
also across crops. This suggests that these parameters are linked by a few farmer specific 
“productivity factors”. Such latent productivity factors could be used for imposing some 
structure on the variance-covariance matrix of the considered random parameters and, 
thereby, for significantly reducing the number of covariance parameters to be estimated. Also, 
relying on Laplace approximates for the regime choice probability function of the ESR-MEMC 
model involves tedious and time consuming computations. Less accurate but significantly 
simpler approximation approaches could dramatically reduce the estimation burden. But, 
these cruder approximation approaches could also impact the consistency of the estimated 
model. The extent of these impacts and the related – estimation burden versus specification 
approximation – trade-off is worth investigating in future work. 

 

 

3. COST ALLOCATION 

3.1. Variable input allocation among crops: a time-varying random 
parameters approach 

3.1.1. Introduction 

Getting information about production costs for each crop at the farm level is very important 
when analyzing multi-crop farms’ behaviors. It is indeed very useful to investigate variable 
input uses decisions of farmers for policy purpose. Production costs per crop can also be used 
as explanatory variables in more complex models of production choice (Letort and Carpentier, 
2010).  However, information these cost per crop is generally not provided in accountancy 
dataset, such as Farm Accountancy Data Network (FADN) data, available to agricultural 
economists. The information on variable input uses in these data only concerns aggregate 
expenditure at the farm level, and adequate statistical and\or economic modeling are 
necessary to allocate this aggregate information among the different crops produced by the 
farms. 

Different approaches have been proposed in the agricultural economics literature to 
overcome this issue. Carpentier and Letort (2012) distinguish two groups of approaches. The 
first group includes approaches that consider only variable input allocation equations, in 
which the input allocation coefficients are treated as unknown parameters to be estimated, 
these parameters being either fixed, parametric functions of exogenous variables, or random 
(Dixon, Batte and Sonka 1984; Hornbaker et al., 1989; Just et al., 1990; Dixon and Hornbaker 
1992).  The second group of approaches considers input allocation equations as a part of a 
system of equations that includes crop yield equations, acreage functions or production 
equations (Just et al., 1990; Chambers and Just, 1989; Letort and Carpentier, 2012). Even if 
the second approach introduces a lot more economic information compared to the first 
approach, the first approach is the most widely used, owing to its ease of implementation 
using regression approaches (OLS, GLS, SUR), and to the satisfactory results it generally 
provide in terms of production cost predictions compared to the second approach (Just et al., 
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1990). Estimating single variable input allocation equations however raises different issues 
that must be addressed to ensure the consistency of this approach. First, the use of standard 
regression approaches does not guarantee that estimated input costs lie in reasonable ranges. 
These approaches can, for instance, lead to negative estimates of input costs per crop. 
Secondly, because input costs vary across farms, the observed, but also unobserved, 
heterogeneity among farms and farmers has to be taken into account.  Finally, input uses per 
crop depend on acreage choice decisions, which are also determined by unobserved farm 
characteristics. This can lead to estimation issues when one seeks to account for unobserved 
farm heterogeneity in input allocation equations.  

Given the limited information generally available in observed data samples, a general way to 
overcome the issues concerning the magnitude of estimated input costs is to impose 
constraints on parameters or to introduce additional out-of-sample information. Approaches 
based on inequality-restricted regression estimation (Ray, 1985; Dixon and Hornbaker, 1992), 
on Bayesian estimation (Moxey et Tiffin, 1994; Heckelei et al., 2008) and on Generalized 
Maximum Entropy estimation (Léon et al., 1999) have been proposed to this end. Issues 
related to the presence of unobserved farm heterogeneity in input allocation equations have 
also been addressed in the literature (Dixon, Batte and Sonka 1984; Hornbaker et al., 1989; 
Dixon and Hornbaker 1992; Hallam et al., 1999). However, as pointed out by Lence and Miller 
(1998), Dixon and Hornbaker (1992) and Carpentier and Letort (2012), the random parameter 
(RP) approaches, generally used in that case, have to deal with issues related the dependence 
between variable input use and acreage choice decisions. Dixon and Hornbaker (1992) 
propose correlation tests without, however proposing a method allowing to take this 
correlation into account, while Carpentier and Letort (2012) propose an approach based on 
control functions, which requires a simultaneous estimation of input use and acreage choices 
equations. To our knowledge, the different approaches proposed in the literature to estimate 
uniquely input allocation equations thus do not allow to simultaneously (i) control for 
unobserved farms and farmers heterogeneity, (ii) deal with the dependence of input uses per 
crop to acreage choices and (iii) guarantee consistent values of input use estimates.  

Our main objective in this paper is to propose an approach allowing to address these three 
issues. To do so, we consider a panel data model of input allocation derived from accounting 
identities. We use a random parameter specification to account for farm unobserved 
heterogeneity. The unobserved crop input uses are viewed as time-varying random 
parameters, and we control for the potential correlation between crop input uses and acreage 
decisions by expressing these random parameters as functions of (tine-varying) exogenous 
variables containing acreage shares. To ensure that the estimated input uses per crop lie in 
reasonable ranges, we introduce additional information in the model through the distribution 
of random parameters. For instance, using lognormal distribution for random parameters, we 
enforce non-negativity constraints.  

This model is estimated, using an extension of Stochastic Approximation Expectation 
Maximization (SAEM) algorithm (Delyon et al., 1999), on a sample French farms’ accounting 
data. Our estimation results show that our RP estimation approach performs better in terms 
of input use predictions than its OLS counterpart. The rest of the paper is structured as follows. 
In section 3.1.2., we present our model of input use allocation. Our SAEM estimation approach 
is presented in section 3.1.3, and the empirical results in section 3.1.4. . Finally, we conclude. 



 

REPORT 3.4 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

41 

 

3.1.2. Random Parameter model of input use allocation 

We consider a set of crops { }1,2, ,Cº KC  produced by a farmer i  =( 1, , )Ki N  in period t. 

We denote by ,c its  the acreage allocated to crop Î Cc  by farmer i in period t. In the following, 

we focus on one variable input used by farmer i to simplify the presentation of the model, 
given that the generalization to J  inputs is straightforward. Let itx  denotes the quantity of 

variable input used at the farm level by farmer i  at time t  and  ,c itx  denote the quantity of 

variable input used per unit of land of crop Î Cc . The input allocation problem considered 

consists in recovering the input quantity ,c itx  for each crop c Î C , for each farmer i  and each 

period t such that: 

(1) , ,Cit c it c it it itc
x s x

Î
= =å s x , 

with = Î,( : C)x it c itx c  and  = Î,( : C)sit c its c .  

Including the (centered) measurement error term itu , equation (1) becomes: 

(2) 
Î

¢= + = +å , ,C
s xit c it c it it it it itc

x s x u u  with =[ ] 0itE u . 

In addition, the input use equation at farm level is completed by the model of crop input uses 

,c itx  for Î Cc . 

3.1.2.1. Specification of ,c itx  

One of the main advantages of panel data is that it allows the estimation of models accounting 
for the variability of unobserved determinants - called unobserved heterogeneity - of the 
modeled phenomena (see, e.g., Woodridge, 2002; Arellano and Bonhomme, 2011). In our 
case, these determinants can be unobserved characteristics of the farmers (e.g., aptitudes, 
motivations) and farms (e.g., soil quality, spatial distribution of the plot, available material) 
which do not vary or vary little over the time period considered. Here, it is assumed that crop 

input uses ,c itx  is a transformation of normal distributed terms m ,c it , where this 

transformation induces bounds. By doing so, it is easy to guarantee that the estimated crop 

input uses ,c itx   lies in reasonable ranges. For instance, to force the positivity of ,c itx , we can 

assumed that m=, , , ,exp( )j k it j k itx . This allows introducing constraints on crop input uses using 

unconstrained parameterization.  More specifically, we assume that: 

(3) m=, ,( )c it c itx h     

and   

(4) m b a e= + +, , , ,0 ,c it c i c t c it   with  e =,[ ] 0c itE , 
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where h is a non-linear transformation. For example - 1h  may be log-normal distribution, 
censored-normal distribution or Johnson’s (1949) SB distribution (Train, 2005). The last may 
allows incorporating additional information provided by experts in the model.  

The normal distributed term m ,c it  is decomposed in three components. First, the farm-specific 

effects b ,c i  denote the mean values of m ,c it . It is assumed that b ,c i  is specific to farmer/farm 

for Î Cc  and vary randomly across farmers and farms. It will be normal distributed.  The 

farm-specific effects b ,c i  allows accounting for, among others, the effect of farms’ factor 

endowment (e.g., machinery, soil quality, climatic conditions) and farmers’ motivations and 

skills. Secondly, the year-specific effect a , ,0c t  denote the deviations of m ,c it  with respect to 

the farm-specific effects b ,c i  at time t . For identification, a , ,0c t  is normalized to 0 at t=1. Lastly, 

the error terms of the model of crop input uses e ,c it  allow accounting for the effects of 

stochastic events not taken into account in b ,c i  or a , ,0c t  (e.g., weather, pest infestation). 

In compact form, equation (4) becomes: 

(5) = + +,0μ β α εit i t it   or  = Ä + +
( )( ) 0 ( )μ ι β α ε
ii T i i  

where m= Î,( : )μ it c it c C  and = Î( ) ( )( : )μ μ Hi it it  are column vector. Similarly, we define  ε it  

and  ( )ε i , and  ,0αt  and 0α .  

It is assumed that:  

(6) s 2
0(0, ): Nit iidu , 0( , )ε 0 Ω: Nit iid  and b= Î, 0 0( : ) ( , )β ω ψ: Ni c i iidc C .  

It is also assumed that the covariance matrices 0Ω  are diagonal matrices. All correlation in 

crop input uses decisions will be captured by β i  through the covariance 0ψ , which it is 

assumed unrestricted. Finally, it is assumed that itu , ε it  and β i  are mutually independent, 

and  itu , ε it , and β i  are independent to ,c its  for Î Cc . 

The assumption of independence between β i  are independent to ,c its  may be unverified. Let 

z it denotes the vectors of observed farmer’s/farm’s characteristics.  As previously mentioned, 

ε it  capture the effects of stochastics events influencing farmers’ input use decisions during 

the cropping season. These events are thus unknown to farmers at the time of acreage 
choices, in the planting season, implying that they are independent of crop acreages:  

(7) = =( | , ) ( | )ε s z ε s 0it it it it itE E .  

On the other hand, β i  captures the impacts of unobserved farmers’ characteristics that may 

also affect their acreage choice decisions. To account for this potential link between acreage 
choice and crop input use decisions and avoid bias in the estimation of the model, we follow 
Mundlak (1978) and specify:  

(8)  b w p h= + - +, ,0 , . , . ,0 ,( ( ))c i c c i c i c c is E s   

where , .c is  denote the means of crop acreage shares at farm level, , .( )c iE s  denotes the sample 

average of , .c is  and h ,c i  denote the random effects. We also consider 
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(9) m b a d e= + + - +, , , ,0 , , ,0 ,( ( ))c it c i c t c it c it c c its E s , 

 where ,( )c itE s  is the sample average of ,c its . Given that, m ,c it depends on ,c its  and 

(10)  h =, , .( | ) 0c i c iE s   and  e =, ,( | ) 0c it c itE s  

More generally, it is possible to incorporate in flexible way observed control variables – 
including crop acreage shares and crop yield levels – in the crop input uses model: 

(11)  b w h¢= + - +, ,0 , . , . ,0 ,( ( ))z z πc i c c i c i c c iE   

(12) m b a e¢= + + - +, , , ,0 , , ,0 ,( ( ))z z δc it c i c t c it c it c c itE , 

where ,zc it include farmers’ crop acreage share and farmers observed characteristics. For 

instance, the average yield at region levels, can be used as a proxy for the production and 
sanitary conditions of each region, in order to account for the specificity of production in each 
region. This will improve the identification of crop input uses model. 

To summarize, the considered input allocation model is a random parameters model where 
the random parameters are time-varying and depend on both (centered) time-invariant and 
time-varying control variables: 

(13) 
Î

= +å , ,Cit c it c it itc
x s x u  with  s 2

0(0, ): Nit iidu , 

(14) m=, ,( )c it c itx h  , 

(15) m w h a e¢ ¢= + - + - + + +, ,0 , . , . ,0 , , ,0 , , ,0 ,( ( )) ( ( ))z z π z z δc it c c i c i c c it c it c c i c t c itE E  

where:  

(16) h= Î, 0( : ) ( , )η 0 ψ:C Ni c i iidc  and e= Î, 0( : ) ( , )ε 0 Ω:C Nit c it iidc . 

The covariance matrix 0Ω  is diagonal matrix while the covariance 0ψ  is unrestricted 

covariance matrix. It is also assumed that itu , ε it , and η i  are mutually independent, and itu , 

ε it  and η i  are independent to ,c its  for Î Cc . 

This model is estimated based on an extension of the SAEM algorithm proposed by Delyon et 
al. (1999). The approach used for its estimation is presented in detail in Appendix 3A. 

3.1.3. Empirical application 

3.1.3.1. Data 

This section presents an application aimed to illustrate the empirical tractability of our 
modelling approach as well as to demonstrate his ability to predict variable input cost per 
crop for each farmer at each point in time t. The model presented above was applied to a 
sample of 1081 French (5028 observations) grain crop producers located in the North and 
North-East of France and observed from 2007 to 2014. Farmers are observed at least three 
consecutive years in the sample. We consider 11 crops produced in this area (wheat, winter 
barley, spring barley, corn, sugar beets, alfalfa, peas, rapeseed, poppy seed, potatoes, starchy 
potatoes). The available information includes acreage and yield levels for each crop and 
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variable input use expenditures, at farms level. This sample has been extracted from data 
provided by an accounting agency located in the French territorial division La Marne. Here, 
we present fertilizer and pesticide use allocation. The advantage of the considered data is 
that the input costs per crop are also available, e.g.: Table 8 shows the average fertilizer and 
pesticide use expenditures (euro/ha, at base 2005 price level) per crop and per year, observed 
in sample (for produced crops). They have been used to validate the results of our estimations. 
Input prices are computed for each category of crops using he hired production services price 
index (base 100 in 2005) obtained from the French department of Agriculture. For pesticides, 
these prices vary from crop to another. However, for fertilizers, we assume the same price 
for all considered crops.  Since these prices may differ from crop to another as in the case of 
pesticides, they are directly introduced in the in the estimation process. This allows 
accounting for price fluctuations other time.  

Table 8 also shows the average crop acreage shares. These vary from one crop to another, 
and crops with large acreage share have generally high production frequency. 

Table 8. Descriptive statistics of the sample 

 

Freq.  of 
production 

(%) 

Acreage share  Pesticide  Fertilizer  

Sample 
(%) 

Produced 
(%) 

euro/ha, 

 at base 2005 price levels 

Winter wheat 100 35 35 180 187 

Spring barley 87 15 18 102 139 

Winter barley 65 06 10 150 160 

Corn 34 05 14 103 151 

Sugar beet 81 12 15 251 224 

Alfalfa 62 07 11 60 207 

Peas 26 02 07 141 66 

Winter rapeseed 92 16 17 191 181 

Blue opium poppy 08 01 07 63 102 

Potato 11 01 08 704 248 

Starch potato 08 01 10 480 266 

 

3.1.3.1. Estimation results 

We estimated input allocation equations for pesticides and fertilizers for the considered 11 
crops that cover more that 90% of the considered farms. We considered one type of 
constraints on estimated crop input uses. Non-negativity constraint are imposed on crop 
input uses using log-normal parameterization (unconstrained parameterization). We also 
incorporating crop acreage shares observed in sample and other farms/farmers 
characteristics (e.g., average crop yields by department obtained from the French department 
of Agriculture) as control variables in the crop input uses models.  
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Our estimations are conducted by using the R package WInputAll developed for this purpose  
(see section 3.2). More details this package is given below. The recursive step of simulation 
of the SAEM algorithm is implemented using 100 draws (MCMC) at each iteration. We 
consider 300 iterations for the first stage of estimation where the algorithm explores 
parameters space without memory, tries to escape local maxima and reach quickly the 
neighborhood of the maximum likelihood estimator. The algorithms converges without 
difficulties and convergences of parameters are checked using plot of the sequences of 
estimated parameters at each iteration. The global convergence is also checking regarding 
the plot of the sequence of the estimated complete data log-likelihood functions, as it 
resumes all information in parameters. 

Selected estimation results are reported in Table 9 and Table 10, the complete results being 
available from the authors upon request. These results show that the model fits relatively 
well to the data. Most parameters are well estimated especially the expectations and the 
variance parameters of random parameters. Table 9 shows the expectations and the 
variances of the parameters, which are statistically significant and demonstrate that 
unobserved heterogeneity matters in farmers’ crop input uses. 

Table 9. Parameters estimates: estimated distribution of random parameters 

 Pesticide (%) Fertilizer (%) 

w

h e

¢= +

¢+ + +

, ,

, , ,

ln( ) z π

z δ

k it k k i

k i k i k it

x
 

Expecta -

tion:  wk           

(SE) 

Variance  

of  h ,k i       

(SE) 

Variance 

of   e ,k it           

(SE) 

Expecta -

tion:  wk           

(SE) 

Variance     

of   h ,k i         

(SE) 

Variance 

of  e ,k it   

(SE) 

Winter wheat 40.8 (0.8) 5.4 (0.3) 0.2 (0.0) 18.6 (0.5) 3.0 (0.2) 0.2 (0.0) 

Spring barley -12.2 (0.3) 0.5 (0.0) 0.2 (0.0) 11.2 (0.5) 2.2 (0.1) 0.3 (0.0) 

Winter barley 54.9 (0.3) 0.6 (0.1) 0.3 (0.0) 62.4 (0.5) 1.6  (0.1) 0.2 (0.0) 

Corn -06.8 (0.3) 0.8 (0.1) 0.3 (0.0) 38.3 (0.3) 0.9 (0.1) 0.2 (0.0) 

Sugar beet 89.3 (0.4) 1.2 (0.1) 0.2 (0.0) 85.4 (0.4) 1.5 (0.1) 0.2 (0.0) 

Alfalfa -218.7 (2.4) 0.1 (0.0) 0.2 (0.0) 97.1 (0.5) 1.9 (0.1) 0.2 (0.0) 

Peas 23.0 (0.2) 0.3 (0.0) 0.1 (0.0) 30.6 (0.3) 0.4 (0.0) 0.3 (0.0) 

Winter rapeseed 73.1 (0.6) 2.8 (0.2) 0.3 (0.0) 58.1 (0.5) 2.6 (0.1) 0.2 (0.0) 

Blue opium poppy -26.5 (0.4) 1.0 (0.1) 0.2 (0.0) 33.5 (0.4) 0.7 (0.1) 0.2 (0.0) 

Potato 194.4 (0.4) 0.5 (0.0) 0.2 (0.0) 99.1 (0.5) 2.1 (0.1) 0.1 (0.0) 

Starch potato 149.5 (0.2) 0.1 (0.0) 0.2 (0.0) 82.2 (0.4) 0.8 (0.1) 0.2 (0.0) 

Once we have estimated the parameters characterizing the distribution of the random 

parameters ( )iμ , we can “statistically calibrate” those parameters for each farmer in our 

sample and thus obtain a set of farmer specific “calibrated” models that can then be used to 

predict itx , exp( )it it=x μ  for it Î H . In this study, the specific parameter ( )iμ  of farm i is 

calibrated as the mode of its (simulated) probability distribution conditional on observed data, 
when it is used. One interesting feature is that this procedure also allows us to calibrate the 
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potential input cost itx  corresponding to crops that have not been grown by the considered 

farmer. The estimated farmer input cost ˆ
itx  compared to the real values, allow us to compute 

fitting criteria, Sim-R², which are reported in Table 10. The Sim-R² criterion measures the 
quality of the prediction of the observed choices of farmers by the estimated models. It is 
obtained by regress the observed value on predicted value. These estimated criteria tend to 
show that the proposed model offers a satisfactory fit to our data. Also, the estimates crop 
input uses means lies in reasonable range regarding the sample average of crop input uses. 

 

Table 10. Fitting criteria 

 Pesticide Fertilizer 

 
Sim
-R2 

AAD Estimate
d mean ( 

Sample 
Average 

Sim-R2  
% 

AAD Estimate
d mean  
(S.d.t) 

Sample 
Average 
(S.d.t) 

Winter wheat 54 0.31 173 (41) 180 (40) 75 0.24 148 (40) 187 (47) 

Spring barley 16 0.24 97 (09) 102 (28) 61 0.19 128 (25) 139 (38) 

Winter barley 05 0.41 178 (16) 150 (41) 48 0.29 207 (39) 160 (42) 

Corn 03 0.37 94 (08) 103 (35) 34 0.30 146 (16) 151 (42) 

Sugar beet 20 0.63 246 (29) 251 (65) 60 0.34 274 (53) 224 (71) 

Alfalfa 03 0.58 11 (0.7) 60 (27) 39 0.77 299 (50) 207 (80) 

Peas 07 0.47 129 (17) 141 (42) 01 0.31 131 (08) 66 (33) 

Winter rapeseed 33 0.36 235 (38) 191 (49) 66 0.28 196 (35) 181 (47) 

Blue opium poppy 00 0.19 74 (6) 63 (28) 00 0.26 140 (18) 102 (36) 

Potato 08 1.53 708 (43) 704 (144) 13 0.66 268 (51) 248 (67) 

Starch potato 39 1.01 448 (23) 480 (113) 54 0.52 245 (26) 266 (78) 

 82    80    

 

Figures 4-6 display our results for three selected crops wheat, rapeseed and potato. Input 
uses are measured per ha in 100€ at the 2005 prices. Figure 4 demonstrate that we obtain 
reasonably good results when estimating fertilizer and pesticide input uses for winter wheat, 
which is produced by all sampled farmers and represents 35% of the arable crop acreage on 
average in our dataset. These Figures plot the estimated per hectare input use levels  against 
their observed “true” counterparts. Of course, our estimated input use levels significantly 
differ from their true counterparts. But, most estimates lie within reasonable ranges around 
their true counterparts. For instance the average difference between the true and estimated 
(in absolute value, AAD) fertilizer use equals 0.37 while the average fertilizer use equals about 
2 (i.e., about 200€/ha at the 2005 fertilizer prices). Yet, we underestimate fertilizer uses. 
Rapeseed is produced by 96% of the sampled farms but its average acreage share doesn’t 
exceed 15%. Figure 5 shows that the estimated fertilizer and pesticide use for rapeseed are 
of lower quality than those for wheat, and that we overestimate pesticide uses for rapeseed. 
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Figure 6 shows that our estimation approach fits relatively poorly the chemical input uses for 
potato production, which only concerns 11% of the sampled farms (for an average crop 
acreage of 2%).  

 

Figure 4. Observed versus estimated pesticide (left) and fertilizer  (right) uses for wheat 
  

 

  

Figure 5. Observed versus estimated pesticide (left) and fertilizer  (right) uses for rapeseed 

  

Figure 6. Observed versus estimated pesticide (left) and fertilizer  (right) uses for potato 
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3.1.4. Conclusion  

In this study, we consider random parameter input allocation model. It allows characterizing 
unobserved heterogeneity across farms and incorporating non-negativity constraints on crop 
input uses in flexible way. Our results show that (i) recovering pesticide uses is generally more 
difficult than recovering fertilizer uses, (ii) estimation accuracy decreases with the average 
acreage share of the considered crop and (iii) average estimated input uses are close to their 
true counterparts, in general. These results are promising. 

We are currently investigating the effects of various constraints as means for improving crop 
input use estimates. Our final objective is (i) to characterize the models and constraint sets 
yielding the most accurate results and (ii) to devise an algorithm for estimating the considered 
models that is relatively easy to code, and to provide suitable ranges for its tuning parameters. 

 

3.2. WInputAll: An R package for input cost allocation 

The results presented in section 3.1 have been obtained by using an R Package developped 
by INRAE team within the MIND STEP project: the WinputAll package. This package is in the 
final testing phase and will be made available to R users on CRAN in the future.  

The package thus includes the main function rpinpallEst for the single-input case. The 
documention of this function is presented in section 3.2.1 bellow. 

 

3.2.1. Usage 

## S3 method for class 'rpinpall' 

print(x, ...) 
 
## S3 method for class 'rpinpall' 
summary(object, ...) 
 
## S3 method for class 'rpinpall' 
plot(x, ...) 
 
rpinpallEst( 
  data, 
  id_time, 
  total_input, 
  crop_acreage_sh, 
  crop_input_price = NULL, 
  crop_indvar = NULL, 
  crop_indvar_i = NULL, 
  weight = NULL, 
  distrib = c("lognormal", "normal", "logit-normal", "censored-normal", "probit-normal"), 
  lower = -Inf, 
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  upper = Inf, 
  sim.method = c("MHI", "MHRW", "MH"), 
  calib.method = c("estim-sim", "cmode", "cmean"), 
  saem.control = list() 
) 

 

3.2.2. Arguments 

x An object produced by the function rpinpallEst, to be displayed 

... Other arguments 

object An object produced by the function rpinpallEst, to be displayed 

data name of the data frame or matrix containing all the variables included in the model 

id_time first (individual) and second (time) level variables allowing characterizing panel 
data. 

total_input variable containing the total input used at farm level to be allocated to the different 
crops 

crop_acreage_sh list of variables containing the acreage shares of the different crops 

crop_input_price optional list of variables containing the input prices for considered crops. 
Default=NULL 

crop_indvar optional list of vector of (time-varying) variables specific to each crop used to 
control for observed (individual and/or temporal) characteristics in the estimation 
process. Default=NULL 

crop_indvar_i optional list of vector of (time-constant) variables specific to each crop used to 
control for observed time-constant characteristics in the estimation process. 
Default=NULL 

weight optional variable containing weights of individual sample farms. Default=NULL 
(equal weight is given to each farm). Default=NULL 

distrib assumption on the distribution of input use per crop (x_kit): "normal", "lognormal" 
"logit-normal", "probit-normal" or "censored-normal". Default="lognormal" 

lower lower bound when using a bounded distribution for x_kit 

upper upper bound when using a bounded distribution for x_kit 

sim.method method used to draw the random parameters in the simulation step of the 
estimation process: "MHI" (independant Metropolis Hasting), "MHRW" 
(Metropolis Hasting Random Walk) or "MH" (combined "MHI" and "MHRW"). 
Default= "MH" 

calib.method method used: "cmode" (conditional mode), "cmean" (conditional mean) and 
"estim-sim" (last simulation in the estimation process). Default="estim-sim" 

saem.control list of options for the SAEM algorithm. See 'Details 
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3.2.3. Details 

An SAEM algorithm is used to perform the estimation of input uses per crop. Different options 
can be specified by the user for this algorithm in the saem.control argument The saem.control 
argument is list that can supply any of the following component : 

maxit maximum total number of iterations. Default=1000 

K.burn other arguments 

K.SA an object produced by the function rpinpallEst, to be displayed 

K.RS name of the data frame or matrix containing all the variables included in the model 

tol first (individual) and second (time) level variables allowing characterizing panel 
data. 

rdraw.mhrw number of random draws in the estimation process when sim.method="MHRW". 
Default=50 

rdraw.mhi number of random draws in the estimation process when sim.method="MHI". 
Default=50 

calib.mult allow providing the number of random draws in the calibration process. Default=10 

stde.mult allow providing the of random draws for computation of estimation standard 
errors. Default=10 

p.SA parameter determining step sizes in the Stochastic Approxiation (SA) step. Must be 
comprise between 0 and 1. Default=1 

dec.omega.u option forcing the final estimated variance of error terms to be quasi null (5.10-3) 
in order to ensure the equality between the (estimated) sum of inputs per crop and 
the (observed) total input. Default=FALSE 

doParallels logical.If TRUE a parallel processing is used when more than 2 cores are available. 
Default=FALSE 

doTempering logical. If TRUE the tempering approach proposed by (Allassonnière and Chevallier, 
2021) is used to avoid convergence to local maxima. Default=TRUE 

showProgress logical. If TRUEthe evolution of the estimation process is displayed graphically at 
the bottom of the screen. Default=TRUE 

showIterConvLL logical. If TRUE iteration number and convergence value are displayed during the 
estimation process. Default=FALSE 

3.2.4. Returned results 

rpinpallEst returns a list with the following components: 

xit_predict matrix of predicted crop input used per ha 

yit_predic list of results of estimation: estimated parameters 

est_pop list of parameters standard errors 
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call copy of the function call 

opt list of saem algorithm options 

conv.ind.cll vecto vector of convergence indicator 

data.list list of individual data used for estimation 

 

3.2.5. Functions 

The following methods allow display the results of estimation: 

print(rpinpall) displays the distribution of estimated crop input uses 

summary(rpinpall) displays a summary of estimated parameters 

plot(rpinpall) plot the "global" convergence indicator 

 

4. MICRO-ECONOMETRIC MULTI-CROP MODEL: 
APPLICATION AND ALLEVIATING THE ESTIMATION 
BURDEN 

4.1. (Slight) model changes for (significant) alleviation of the estimation 
burden 

Estimating the Micro-Econometric Multi-Crop (MEMC) model presented in Section 2 is 
challenging for two main reasons. First, it features numerous random parameters the joint 
probability distribution of which needs to be estimated. If Stochastic Approximate 
Expectation-Maximization (SAEM) algorithms (Delyon, Lavielle and Moulines, 1999, Lavielle, 
2014) enable applied statisticians (and econometricians) to efficiently estimate parametric 
random parameter models, the estimation burden of such models quickly increases (at a 
quadratic rate) in the number of random parameters featured in the considered model. We 
address this dimension issue by employing a common factor approach. Second, the MEMC 
model we consider features endogenous production regimes, which a major originality of this 
model. Estimating this model requires to compute regime choice probability functions that 
are particularly complicated. In particular, these probability functions are defined as 
expectations over the distribution of two sets of terms, the entire set of random parameters 
of the model and a sub-set of error terms of the crop acreage choice model. The solution 
approach we initially adopted, which is proposed by Harding and Hausman (2007) and based 
Laplace approximations, yields accurate approximations of the regime choice probability 
functions of interested. Yet, this approach is computationally intensive and cumbersome to 
code. We tested two competing approaches against the Laplace approximation approach: an 
approach based on simulation methods, which is also computationally intensive but easier to 
code, and an approach based on a relatively rough approximation of the considered 
probability function, which is easy to code and computationally (very) light. We obtained 
satisfactory solutions to both issues. 



 

REPORT 3.4 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

52 

 

We also tried to address another issue that showed up during the course of Mind Step. The 
MEMC model we consider assumes that farmers choose their production regime, that is to 
say the set of crops they actually grown, among a given set of regime choices. The empirical 
versions of this model we have estimated so far feature 15 regimes (that cover more than 
85% of the observations of the datasets we use). Increasing the regime number is possible in 
theory, and could be very useful for empirical purposes, but appears to be challenging from a 
practical viewpoint. We have not been able to obtain satisfactory solutions to this issue so far. 
It is difficult to specify a reliable discrete choice model when the choice set exceeds 
hundreds.19 

4.1.1. Factor structure and parameter reduction 

The MEMC model presented in Section 2 implies features random parameter vector 

,( : 1,..., )i m i m Mg= =γ  that aims to account for farms’ and farmers’ unobserved 

heterogeneity. This random parameter vector is assumed to be multivariate normal, with 

(1)            0 0( , )iγ μ Ω: N .20 

 Since the model we consider is a relatively large equation system the dimension of parameter 

iγ  is quite large in our applications (e.g., M ranges around 70). Moreover, as iγ  is used for 

accounting for unobserved heterogeneity effects, restricting its probability distribution is 
unwarranted a priori. Therefore, we considered estimating our MEMC model while leaving 
variance matrix 0Ω  unrestricting in the first place. 

Two observations led us to reconsider this option. First, the number of unrestricted elements 
of matrix 0Ω  grows in M at a quadratic rate. This number is given by ( 1) / 2M M+  – that is to 

say M variance parameters and ( 1) / 2M M-  covariance parameters – meaning hundreds of 

parameters to be estimated in our applications. This dimensionality issue does not rise 
practical computational issues (which is a major virtue of the EM type algorithms we use) but 
rather identification problems, especially regarding the covariance parameters among the 
elements of iγ  (e.g., Cherchi and Guevara, 2012). These are numerous and often poorly 

estimated (which also slows  down the estimation process). Second, our empirical results 
demonstrated specific patterns in the probability distribution of the elements of iγ  and their 

relationships. In particular, the parameters representing crop potential yield levels and the 
crop input levels required to achieve these potential yield levels appear to be strongly 

 

19 The regime number issue considered here appears to be less challenging with the (quadratic) acreage choice 
models considered by Heckeleï and Wolff (2003) or Carpentier and Letort (2012), which are very close to those 
featured in common PMP models (e.g., CAPRI, IFM-CAP). In these models (which ignore production regime fixed 
costs), acreage choices are characterized by the first order conditions to a (constrained) quadratic programming 
problem. These consist of a system of in/equality conditions. Importantly, production regime choices need not 
be explictly modelled as they are fully characterized by the by the first order conditions related to crop acreage 

choices. We plan investigate the estimation of such “random parameter PMP type models with endogenous 
regime switching” in future projects. 
20 Note, however, that this random parameter can be partly transformed (with, e.g., exponential or 
Logit transformations, truncations) when incorporated in the model. 



 

REPORT 3.4 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

53 

 

(positively) correlated for a given crop but also across crops. This suggests that the joint 
probability distribution of these farm specific “technical” parameters is partly governed by a 
few productivity or practice intensity common factors. 

Taken together these observations led us to consider reducing the number of parameters 
characterising the probability distribution of random parameter vector iγ  on the one hand, 

and to adopt a simple common factor approach for doing so in the other hand. The 
assumptions underlying our “parameter reduction” approach are quite simple. (i) The 
correlations among the elements of iγ  are due a limited set of “common factors” and (ii) the 

effects of these common factors can be incorporated in the probability distribution of iγ . 

Indeed, we assume that iγ  can be decomposed as: 

(2) 0 0i i i= + +γ μ Λ b η  

where term ib  designates the set of latent common factors we consider while term 0Λ  

designates the factor loading parameter M L´  matrix and term iη  is a residual term.21 We 

further assume that: 

(3a) ( , )i Lb 0 I: N , 

(3b) 0( , )iη 0 Ψ: N  where variance matrix 0Ψ  is diagonal 

and: 

ib  and iη  are independent.  

The assumptions stating that matrix 0Ψ  is diagonal and the independence of ib  and iη  

indicate that all correlations among the elements of iγ  are due to common factors ib  in the 

considered model of iγ . In this model, common factors ,( : 1,..., )i ib L= =b l l  basically are 

modelling tools that are mostly aimed to capture the links among the elements of iγ . Indeed, 

the elements of ib  may not be easily interpreted. They may not even capture well-defined 

productivity or practice intensity factors.22 This explains why factor loading matrix 0Λ  is left 

unrestricted. 

Based on the specification of iγ  given above, the probability distribution of iγ  is given by: 

(4) 0 0( , )r
iγ μ Ω: N  

 

21 Note that the specification of iγ  can easily be extended to include the effects of observed common factors in 

addition to latent factors ib . 
22 In other words, our specification of iγ  is essentially instrumental or exploratory in the terminology of James 

(2018). Indeed, estimates of factor loading matrix 0Λ  may yield insights on the empirical content of common 

factors ib . 
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where: 

(5) 0 0 0 0
r ¢= +Ω Λ Λ Ψ . 

The considered “common factor” structure of iγ  significantly reduces the number of 

parameters to be estimated if the dimension of ib , which equals L, is sufficiently smaller than 

that of iγ , which equals M. 

Matrix 0
rΩ  contains ( 1)L M+  unrestricted parameter, with LM parameters in factor loading 

matrix 0Λ  and M parameters in diagonal variance matrix 0Ψ .  Indeed, the considered 

“common factor” structure of iγ  saves covariance parameters to be estimated if and only if 

/ 2L M£ . Of course, this structure is satisfactory if it does not unduly constraint the 

correlations of the elements of iγ , that is to say if 0 0
r =Ω Ω , a condition that can be checked 

empirically. 

Panhard and Samson (2009) proposed a convenience  factorization of the complete likelihood 
function of random parameter models that make the implementation of EM-type algorithms 
easy despite their accounting for “common factor” structures similar to the one considered 
here. This option is included in the R package presented below. 

4.1.2. Approximating the regime choice probability 

Computing the likelihood function of the MEMC model presented in Section 2 implies 
integrating regime choice probability functions given (using simplified notations) by: 

 (6) ,0 , , ,0ˆ( ; ) ( | ) ( | ; )s s s s s
it it it it it it itP r P r f d+ += =òΨ ε ε ε ε Ψ ε  

where function ,0 , ,
0

ˆ( | ; )s s s
it it itf + +=ε ε ε Ψ  denotes the pdf of ,0s

itε  conditional on , ,ˆs s
it it

+ +=ε ε . Term 
, ,0( , )s s s

it it it
+=ε ε ε   is the error term vector of the considered acreage choice model, which is 

assumed normal with 0( , )s
itε 0 Ψ: N . 

Let define matrices ,
0 ( ) [ ]s

it itr V+ + +=Ψ ε , 00 ,0
0 ( ) [ ]s

it itr V=Ψ ε  and 0 ,0 ,0
0 ( ) [ , ]s s

it it itr Cov+ =Ψ ε ε . It is easily 

shown that: 

(7)  ,0 , , 0| , 0|
0

ˆ ˆ|( ) ( ( , ), ( ))s s s s
it it it it it it itr r+ + + + +=ε ε ε μ ε Ψ: N  

where: 

(8a) 0| , 0 1 ,
0 0 0

ˆ ˆ( , ) ( ) ( )s s
it it it it itr r r+ + + + + - +=μ ε Ψ Ψ ε  

and: 

(8b) 0| 00 0 1 0
0 0 0 0 0( ) ( ) ( ) ( ) ( )it it it it itr r r r r+ + + + - + ¢= -Ψ Ψ Ψ Ψ Ψ . 
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Term ,s
it

+ε  relates to the acreages of crops that are grown in regime itr  while ,0s
itε  relates to 

crops that are not grown by famer i in year t. Error term ,s
it

+ε  can be is consistently estimated 

by ,ˆ s
it

+ε . But, term ,0s
itε  must be considered as missing in the estimation process because it 

cannot be recovered by combining the model and the data. The Multinomial Logit functional 

form of function ( | )s
it itP r ε   prevents its integration over the probability distribution of ,0s

itε  , 

either analytically or numerically. 

Building on the work of Harding and Hausman (2007), we first consider using Laplace 

approximates of the regime choice probability functions ( | )s
it itP r ε  for computing the 

likelihood function of our model. This approach relies on a second order Taylor expansion in 
,0s

itε  of function ,0 , ,ˆ( | ) ( | ; )s s s s
it it it it itP r f + +=ε ε ε ε Ψ  around an optimally chosen value of ,0s

itε . It is, 

however, time consuming and computationally cumbersome. 

Use of standard simulation methods for integrating function ( ; )itP r Ψ  is simple. It suffices to 

draw simulations of terms ,0s
itε  from 0| , 0|ˆ( ( , ), ( ))s

it it itr r+ + +μ ε ΨN and to approximate ( ; )itP r Ψ  by 

its simulated counterpart. This approach is easy to code and works relatively well. But, it does 
not reduce computing time and, maybe more importantly, it requires simulation draws of 
which we already make use massively for handling the random parameters of our MEMC 
model. 

Indeed, the issue we face here arises because term ,0s
itε  is known to farmers – implying that 

it can contribute to drive their production choice – while it is not observed by the analyst. 

Computing probability functions ( | )s
it itP r ε  consists in solving the multivariate integration 

problem given in equation (17). Any accurate solution approach to this problem is necessarily 
computationnally intensive and, as a result, time consuming. Accordingly, any simple solution 
approach supposes to accept either accuracy loss or some change in the model specification.  

The best estimator of ,0s
itε  that can be computed easily by the analyst is its mean conditional 

on , ,ˆs s
it it

+ +=ε ε , that is to say 0| , ,0 , ,
0

ˆ ˆ( , ) [ | ]s s s s
it it it it itr E+ + + += =μ ε ε ε ε . It can be shown that 

0| , ,ˆ ˆ( | ( , ), )s s
it it it itP r r+ + +μ ε ε  is the first order Taylor expansion of ( ; )itP r Ψ  in ,s

it
+ε  around ,ˆ s

it
+ε . Of 

course, term 0| , ,ˆ ˆ( | ( , ), )s s
it it it itP r r+ + +μ ε ε  is a relatively crude approximation of ( ; )itP r Ψ , 23 

especially when variance matrix 0| ( )itr+Ψ  is relatively large.24 Yet, approximating probability 

function ( ; )itP r Ψ  by term 0| , ,ˆ ˆ( | ( , ), )s s
it it it itP r r+ + +μ ε ε  appears to yield very satisfactory results 

according to our empirical investigations. It yields estimates of the MEMC model that very 
close to those obtained when integrating by the Laplace approximation approach or by 

standard simulation methods (at least in our applications). This may indicate that term ,0s
itε  is 

not a major driver of production regime choice itr , function ( | )s
it itP r ε  is almost linear in ,0s

itε  

 

23 Since ,0 0| , , ,
0

ˆ ˆ[ ( , )| ]s s s s
it it it it itE r+ + + +- = =ε μ ε ε ε 0 . 

24  It suffices to observe that ( )
2

,0 ,0

0| , , 0| 0| , ,

( )
ˆ ˆ ˆ ˆ( | ( , ), ) ( ) ( | ( , ), )s s

s s s s
it it it it it it it it itP r r tr r P r r¶+ + + + + + +

¢¶ ¶
+

ε ε
μ ε ε Ψ μ ε ε  is the second 

order Taylor expansion of ( ; )itP r Ψ  in ,s
it

+ε  around ,ˆs
it

+ε . 
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on its range or/and variance matrix 0| ( )itr+Ψ  is relatively small. This later case can occur if 

terms ,0s
itε  and ,s

it
+ε  are sufficiently correlated (thereby implying that 0| ,

0
ˆ( , )s

it itr+ +μ ε  is a 

relatively accurate estimator of ,0s
itε ). We did not further investigate the underpinnings of 

these empirical observations as we were mostly interested in solving practical computational 
issues. 

The approximate solution approach presented above is computationally much faster (as well 
as much easier to code) than its more accurate alternatives. This option is included in the R 
package presented below. 

 

4.2. RPMultiCrop: An R package for the estimation of MEMC-ERS models 

The RPMulticrop R package has been developped to allow the estimation of the ERS-MEMC model 
presented in section 2 on any farm cost acocunting dataset containing information on crop yeilds, 
acreage shares, input and output prices and, importantly, input costs per crop.  

4.2.1. Package documentation  

4.2.1.1. Usage 

rpmulticropEst( 
  data, 
  idtime, 
  crop_nest, 
  crop_ref = 1, 
  crop_yield, 
  crop_input, 
  crop_acreage_share, 
  crop_price, 
  crop_input_price, 
  crop_subsidy = NULL, 
  crop_acreage = NULL, 
  uaa = NULL, 
  indvar_yield_input = NULL, 
  indvar_acreage = NULL, 
  indvar_rp = NULL, 
  distrib.method = c("modA", "modB"), 
  sim.method = c("MH", "MHI", "MHRW"), 
  calib.method = c("CMODE", "estim-sim", "CMEAN"), 
  saem.control = list() 
) 
 
 

4.2.1.2. Arguments 

x An object produced by the function rpmulticropEst, to be displayed 

... Other arguments 
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object An object produced by the function rpmulticropEst, to be displayed 

data name of the data frame or matrix containing all the variables included in the 
model 

idtime first (individual) and second (time) dimensions of the panel data. 

crop_nest list that describes crop nesting structure 

crop_ref name of reference crop 

crop_yield vector of variables containing crop yields (t/ha) 

crop_input list of vectors of variables containing input uses per crop (unit/ha) 

crop_acreage_share vector of variables containing crop acreage shares 

crop_price vector of variables containing crop prices(euro/t) 

crop_input_price list of vectors of variables containing input prices per crop (euro/unit) 

crop_subsidy vector of variables containing crop subsidies (euro/ha) 

crop_acreage vector of variables containing crop acreage (ha) 

uaa variable containing utilized agricultural area (ha) 

indvar_yield_input vector of variables used to control for observed (individual and/or temporal) 
characteristics in yield equations 

indvar_acreage vector of variables used to control for observed (individual and/or temporal) 
characteristics in acreage equations 

indvar_rp vector of variables used to control for observed (individual) characteristics in 
random parameters model 

distrib.method assumption on the distribution of random parameters 

sim.method method used to draw the random parameters in the simulation step of the 
estimation process: "MH" (Metropolis Hasting) , "MHI" (independant 
Metropolis Hasting), "MHRW" (Metropolis Hasting Random Walk)  

calib.method method used to calibrate the random parameters for each individual once the 
model converged: "CMODE" (conditional mode), "CMEAN" (conditional 
mean) or "sim-saem" (last simulation of the saem algorithm) 

saem.control list of options for the SAEM algorithm. See 'Details 
 

 

4.2.1.3. Details 

An SAEM algorithm is used to perform the estimation of input uses per crop. Different options can be 
specified by the user for this algorithm in the saem.control argument The saem.control argument is 
list that can supply any of the following component 

nb.iter Maximum total number of iterations. Default=1000 

nb.burn Number of iterations of the burn-in phase where individual parameters are 
sampled from their conditional distribution using sim.method and the initial 
values for model parameters without update these parameters. Default=10 
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nb.SA Number of iteration in the First stage of estimation where algorithm explore 
parameters space without memory. The parameter that controls the 
convergence of the algorithm is set to 1. Default=200. 

nb.temp Number of iteration of iterations where tempering approach is used. Algorithm 
tries to escape local maxima if doTempering=TRUE. Default=300. Note that 
nb.burn+nb.SA must be inferior to K.RS and nb.temp must inferior to nb.iter 

toler Tolerance value for the convergence. Default 1.10-3 

rdraw.m1 number of random draws in the estimation process when 
sim.method="MHRW". Default=10 

rdraw.m2 number of random draws in the estimation process when sim.method="MHI". 
Default=10 

calib.mult allow providing the number of random draws in the calibration process. 
Default=10 

stde.mult allow providing the of random draws for computation of estimation standard 
errors. Default=10 

p.SA parameter determining step sizes in the Stochastic Approxiation (SA) step. 
Must be comprise between 0 and 1. Default=1 

doParallels logical.If TRUE a parallel processing is used when more than 2 cores are 
available. Default=FALSE 

doTempering logical. If TRUE the tempering approach proposed by (Allassonnière and 
Chevallier, 2021) is used to avoid convergence to local maxima. Default=TRUE 

showProgress logical. If TRUEthe evolution of the estimation process is displayed graphically 
at the bottom of the screen. Default=TRUE 

showIterConvLL logical. If TRUE iteration number and convergence value are displayed during 
the estimation process. Default=FALSE 

 

4.2.1.4. Returned results 

rpmulticropEst returns a list with the following components: 

est_pop list of parameter estimates and standard errors of these estimates 

call copy of the function call 

opt list of saem algorithm options 

conv.ind.cll vecto vector of convergence indicator 

data.list list of individual data used for estimation 

data.simul data frame, to be used for simulation purpose: data frame used for the 
estimation supplemented by additional columns containing the values of 
estimated fixed parameters and calibrated random parameters for each 
observation 
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4.2.1.5. Functions 

The following functions can be used for summarizing and graphically describing the 
estimation results: 

summary(rpmulticrop) displays a summary of estimated parameters 

plot(rpmulticrop) plot the "global" convergence indicator 

 
 

4.2.2. Notice for using the estimation results to run simulations 

The data frame contained in the data.simul element of the results returned by the rpMulticropEst 
function, can be used to build a multi-crop model production choices for simulation purpose. This data 

frame actually contains observed input and output prices ( ,k itp  and ,k itw ), values of control variables 

( ,
y
k itc , ,

x
k itc ), estimated values of fixed parameters ( ,0

ˆ y
kδ , ,0

ˆ x
kδ ) and calibrated values of the random 

parameters ( ,
ˆy

k ib , ,
ˆ x

k ib , ,ˆ x
k ia , ˆ s

ia , ( ),ˆ s
g ia , ˆ is , ,

ˆc
k ib ) for each observation of the sample.  

Based on this information, the impacts any changes in input and/or output prices on yields, input uses 
and acreage choices can be simulated for each observation of the considered sample by proceeding 
as follows25: 

For a given observation and considering new input and output prices 
*

,k itp  and 
*

,k itw  

1.  Compute predicted  yield ( ,k ity% ), input uses ( ,k itx% ) and gross margin ( ,k itp% ) for each crop: 

*2 * 2
, , ,0 , , , ,

ˆ ˆ ˆ( ) 1 / 2y y y x
k it k i k k it k i k it k ity w pb a -¢= + - ´δ c%  

* * 1
, , ,0 , , , ,

ˆ ˆ( ) ̂x x x x
k it k i k k it k i k it k itx w pb a -¢= + -δ c%  

* *
, , , , ,k it k it k it k it k itp y w xp = -% %%  

 

2. Computed predicted indirect profit ( itP% ) and probability of choice ( P%) for each potential crop 

production regime: 

( )( )
1

( ),ˆ ˆ( )
1

( ), , ,( )
ˆˆ ˆ( ) ( ) ln ( )exp ( )

s s
i h i

s s s
it i h i it ith h

r j r
a a

a a p b

-

-

Î Î
P = -å å l l ll

% %
KG

 

 
( )

( )

ˆˆexp ( ( ) ( ))
( )

ˆˆexp ( ( ) ( ))

i it it i it

it

i it ir

r d r
P r

r d r

s

s
Î

P -
=

P -å

%
%

%
R

,  with ,( )
ˆˆ ( ) c

i k ik r
d r b+Î

= å K
 

 

 

25 Note that the procedure described here correspond to the case of a two-level nesting structure of crop 
acreages, as presented in section 2, but the RPMultiCrop package can also accomodate 3-level nesting strutures 
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3. Keep the regime ( *
itr ) with highest probability of choice and corresponding yields ,k ity% , input 

uses ,k itx%  for the crops produced in this regime and compute predicted acreage shares ( ,k its% ) 

within this regime: 

( ) ( )( )

( )( )

1
( ),

1
( ),

ˆ ˆ( ) 1

( ), , , ( ), , ,( )*
, ˆ ˆ( )

( ), , ,( )

ˆ ˆˆ ˆ( )exp ( ) ( )exp ( )
( )

ˆˆ( )exp ( )

s s
i g i

s s
i h i

s s s s
k g i k it k it g i it itg

k it
s s
h i it ith h

j r j r
s r

j r

a a

a a

a p b a p b

a p b

-

-

-

Î

Î Î

- -
=

-

å

å å

l l ll

l l ll

% %
%

%

K

KG

 

 

 

4.3. Calibration of MP models with estimated “behavioural” parameters 
obtained from the estimated MEMC model 

The Micro-Econometric Multi-Crop (MEMC) model presented in Section 2 significantly differs from 
standard Positive Mathematical Programming (PMP) models. Yet, both types of models share 
important features that make estimated MEMC models useful for calibrating the “slope” parameters 
of PMP models at the farm level, provided that these models consider the same farm sample. The 
considered “slope” parameters largely determine crop acreage responses to changes in (expected) 
crop returns. 

Estimating the random (farm-specific) MEMC model of Section allows obtaining farm-specific crop 
acreage choice elasticities. Analysts conceiving PMP models have developed efficient procedures for 
calibrating the “slope” parameters of their models against available activity choice elasticities. These 
procedures are not discussed here. The purpose of this section is to propose an alternative calibration 
procedure. This procedure exploits the common feature of the MEMC model and PMP models. Indeed, 
the conception of considered MEMC model makes use of an acreage cost management function that 
is analogous to the so-called PMP term of PMP models. The proposed calibration procedure is trivial 
as it consists in applying fairly simple “calibration formulae”. 

4.3.1. Problem setting 

We assume that the MEMC model presented in Section 2 is estimated on a panel dataset 
covering a large farm sample ( 1,...,i N= ) over a T year period ( 1,...,t T= ). Let define the 

following notations: 

{1,..., }K=K : crop set 

itS : total crop acreage of farmer i in year t 

,k itS : acreage of crop k chosen by farmer i in year t, with ,( : )it k itS k= ÎS K  
1

, ,k it k it its S S-= : acreage share of crop k chosen by farmer i in year t, with ,( : )it k its k= Îs K  

,k itp : return of crop k expected by farmer i in year t, with ,( : )it k it kp= Îπ K  

We assume that the considered MEMC model is based on a profit function involving a two-
level MNL/entropic acreage management cost function. Crop set K is partitioned into G 

mutually exclusive crop groups. The crop group set is denoted by {1,..., }G=G . The crop 

subset defining group g is denoted by ( )gK .at Ignoring regime fixed costs, the considered 

profit function is given by 
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( ; , ) ( )MNL E
it it it it itS S S C¢P = -s π s π s  

where function ( )S
itC s  defines the considered two-level MNL/entropic acreage management 

cost function. The functional form of this cost function is given by: 

( )

1 1
, ( ) ( ) ( ), ( ) |( ) |( )( ) ln ln

g

E s
it k k it i g g g i g k g k gk g g k

C cst s s s s s sb a a- -

Î Î Î Î
= + + +å å å ås

K G G K
 

where 
( )

( )
g

g kk
s s

Î
= å K

 denotes the acreage share of group g and 1
|( ) ( )k g k gs s s-=  denotes the 

acreage share of crop k in the acreage of group g.26 It is easily shown that: 

( ) ( )E E
it it it it it itS C cst C= +s S  

where: 

( )

1 1 1
, , ( ), ( ), ( ), ( ), , ,( ) ( ) ln ln

g

E s
it it k it k it i g i g it g it g i k it k itk g g k

C S S S S Sb a a a- - -

Î Î Î Î
= + - +å å å åS

K G G K
. 

Farm specific parameters ia  and ( ),g ia  for g Î G , which are collected in vector iα , are positive. 

They determine to a large extent the crop acreage responses to changes in (expected) crop 
return levels. The larger these parameters are, the more the crop acreages of farmer i 
responds to changes in crop returns π . Importantly, estimating the considered MEMC model 
and using the “statistical calibration” procedure proposed by Koutchadé et al (2018) yields 

estimates of parameter iα , ,
ˆ

i NTα , for each farm of the considered sample. 

Let now assume that the analyst wants to calibrate a PMP model, problably describing 
production choices and handling policy instruments more complicated than those considered 
in the estimated model, on the considered farm sample (for a given year). Let further assume 
that the core of the PMP model used for farm i is given by profit function 

( ; , ) ( )PMP Q
it it itS C¢P = -s π S π S  

where function ( )Q
itC S  defines the usual quadratic PMP term (possibly with a profit risk 

premium as in IFM-CAP). The functional form of this cost function is given by: 

( ) / 2Q
it it itC cst ¢ ¢= + +S b S S A S  

where matrix A is positive definite. Of course, we have 

, ,( )
m

Q
it m it m itS

C b a S¶

¶ Î
= + åS l ll K

 

and 

2

,( )
m k

Q
it mk itS S

C a¶

¶ ¶
=S . 

 

26 Following usual extension by continuity arguments we consider that ln 0k ks s =  if 0ks =  while ( ) ( )ln 0g gs s =  

if ( ) 0gs = . 
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Parameters ,mk ita  determine to a large extent crop acreage choice responses to changes in 

crop return in the considered PMP model. The question we address is the following: how to 

use estimated parameters ,
ˆ

i NTα  (and the information content of the considered dataset) for 

calibrating parameters ,mk ita . 

4.3.2. Calibration procedure  

The calibration procedure we propose here is fairly simple as it relies on the conditions stating 
that: 

2 2

,( ) ( )
m k m k

E Q
it it it it mk itS S S S

C C a¶ ¶

¶ ¶ ¶ ¶
= =S S   for ( , )m Î ´l K K . 

These conditions simply state the PMP farm models display crop acreage responses to 
economic incentives equal to those described by the corresponding farm models obtained 
from the estimated MEMC model in the neighbourhood of the observed choices. 

It then suffices to compute the second order derivatives of entropic cost function ( )E
itC S  in 

crop acreages S and to use the equations given above.  Let function :J ®K G  give the group 

g Î G  to which belong crop k Î K . It is easily shown that: 

2

2

1 1 1 1 1
( ( )), , ( ( )), ( ( )), ( ( )),( ) ( 1)

m

E
it it m i m it m it m it i m itS

C S S S SJ J J Ja a
¶ - - - - -

¶
= - +S , 

2 1 1 1
( ( )), ( ( )),( ) ( )

m n

E
it it i m i m itS S

C SJ Ja a
¶ - - -

¶ ¶
= -S   if  ( ) ( )m nJ J= 27 

and 

2

( ) 0
m n

E
it itS S

C¶

¶ ¶
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The last equality set yields the following “calibration formulae”: 
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The results presented here are easily extended to three-level MNL/entropic acreage 
management cost functions. 

Note, in passing, that the elements of the Hessian matrix of the entropic cost function, that is 

to say terms 
2

( )
m n

E
it itS S

C¶

¶ ¶
S , are non-negative if ( ( )), 0m i iJa a³ >  (given that ( ( )), 0m itS J ³  and 

1
( ( )), , 1m it m itS SJ

- ³ ). This inequality conditions are satisfied for almost all sampled farms in our 

 

27 I.e., if m and n belong to the same group. 
28 I.e., if m and n belong to different groups. 
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applications. They can be enforced in the estimation procedure of the MEMC model we 
consider here. 

4.3.3. Estimating simplified versions of the MEMC models for calibrating 
micro-economic MP models 

As discussed in Section 4.1, estimating the MEMC model considered in Section 2 is relatively 
complicated due to its considering that farmers’ production regime choices are endogenous 
(i.e., farmers’ decisions to produce some crops and not to produce others are explicitly 
modelled). Of course, considering that farmers’ production regime choices are exogenous 
greatly simplifies estimation of this model. It basically suffices to discard the regime choice 
sub-model from the MEMC model. This greatly alleviates the estimation burden because this 
eliminates the challenging computational issues raised by the integration of the regime choice 
probability functions (see Section 4.1.2). Yet, this also modifies the interpretation of the 
estimated model. The parameters of the MEMC model holding fixed farmer’ production 
regime choices depict farmers’ production choices – i.e., crop acreages, input uses and yield 
levels – conditional on their regime choices. Consequently, the simulation model that can be 
obtained from the estimated MEMC model can only be used for investigating the effects of 
policies that do not impact farmers’ production regime choices, that is to say their decisions 
to production certain crops or not. For other policies, simulation results can be affected by 
so-called selectivity biases. 

The differences in the estimated models due to considering or not production regime choices 
may be limited, especially for datasets covering relatively homogenous regions. Our empirical 
investigations tend to confirm this hypothesis. In particular, considering regime choices or not 
when estimating the MEMC model mostly impact the estimates of parameter values related 
to minor crops. The decisions to produce these crops change depending on the economic 
conditions. Yet, since the acreages of minor crops are limited, the estimated models do differ 
much for the parameters related to the production choices related to major crops. Indeed, 
even if this point requires further investigation, estimating simplified versions of the MEMC 
model (i.e., random parameter models considering that production regime choices are fixed) 
is expected to yield estimates of the “slope” parameters of the acreage management cost 
functions (i.e., estimates of terms iα ) sufficiently reliable for calibrating MP models at the 

farm level. 

Furthermore, considering versions of the MEMC model of section 2 ignoring variable input 
choices enables the analyst to obtain reliable estimates of crop acreage choice elasticities 
while overcoming a major issue occurring when using EU FADN data. These data do not report 
cost accounting data (i.e., with input uses provided at the crop level) but rather standard 
accountancy data (i.e., with input uses aggregated at the farm level). Two options are possible 
for accounting for variable input uses in the MEMC model with EU FADN data. First, one can 
estimate input uses at the crop level from input uses observed at the farm and use the 
obtained estimates for estimating the MEMC model. This is the option we explore in the MIND 
STEP project. Second, one can directly incorporate input allocation equations in the MEMC 
model (in place of systems of crop input use equations as in Section 2). Both options have 
merits and drawbacks. Nevertheless, the MEMC model can also be adapted for 
accommodating absence of any information on variable input uses. It basically suffices to 
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discard input use (allocation) equations and to incorporate (expected) input use expenditures 
in the crop acreage choice equations (e.g., Koutchadé et al, 2015). Such MEMC models enable 
to obtain reliable estimates of crop acreage choice elasticities (or the underlying slope 
variables) since farmers’ crop acreage choice patterns are mostly identified by variations in 
crop prices and their effects on (expected) crop returns. Indeed, crop return levels, which 
largely determine farmers’ crop acreage choices, are much more driven by crop yield and crop 
price levels than by crop input expenditure levels (at least after the mid-2000s and before 
2022). 

4.4. Incorporating new technologies in micro-simulation models 

Accounting for adjustments in yield and variable input use levels is based on a menu of more or less 
intensive crop production technologies in most MP farm models. With the notable exception of 
FarmDyn, which considers discrete choices, most models, which are PMP models, consider pairs of 
crop and management intensities as separate activities. For instance, in these models wheat grown 
under (conventional) high-yielding practice and wheat organically grown are two activities to which 
farmers can devote cropland areas. The advantages of this modelling approach are twofold. First, PMP 
models accounting for menus of crop management practices can be developed as “extended” PMP 
models. Second, this approach avoids considering discrete choices in otherwise quadratic 
programming models. Yet, this approach rises specific calibration issues as activities considering the 
same crop grown under different practices are more substitutable than activities concerning different 
crops. Röhm and Dabbert (2023) proposed now well-known calibration devices for solving the 
calibration issues raised by these “extended” PMP models.  

We propose here an alternative modelling approach for incorporating menus of crop production 
technologies in micro-simulation models. This approach considers crop production technology choices 
as discrete choices made at the crop level and simple “smoothing” devices are used for overcoming 
the issues raised by considering (crop,technologie) activities in MP models. 

4.4.1. Problem setting 

We assume that crop k can be grown based on set of technologies that is discrete and finite. 
Let define the following notations: 

{1,..., }K=K : crop set 

,k iS : acreage of crop k chosen by farmer i, with ,( : )i k iS k= ÎS K  

iS : total cropland area of farmer i 

( )iC S : entropic acreage management cost function (MEMC models)  

or a quadratic PMP term (PMP models). 
 

{0,1,..., }k kM=M : set of available production technologies for crop k 

,k i km Î M : production technology chosen for crop k by farmer i 

,
m
k iy : yield level of crop k expected by farmer i if using technology km  

,
m
k ix : input use level for crop k expected by farmer i if using technology km  

,
m
k ip : price paid for crop k to farmer i if using technology km  

,k iw : crop k input prices paid by farmer i 
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, , , , ,
m m m m

k i k i k i k i k ir p y ¢= - w x : return of crop k expected by farmer i if using technology km , 

with , ,( : )m
k i k i kr m= Îr M  

,
m
k ic   : implementation cost of technology km  by farm i, with , ,( : )m

k i k i kc m= Îc M  

 

Assuming that farmer i is economically rational implies that her/his crop technologies are 
given by: 

 , , , , ,( , ) argmax { }
k

o m m
k i k i k i m k i k im r cÎ= -r c M   for  k Î K  

while her/his acreage choices are obtained as the solution to problem: 

{ }, ,argmax ( , ) ( )  s.t.  o
i k k k i k i i k ik K k K

S C S Sp³ Î Î
= - £å åS 0S r c S  

where: 

, , , ,( , ) ( , )

, , , , , ,( , ) max { }
o o
k k i k i k k i k i

k

m mo m m
k k i k i m k i k i k i k ir c r cp Î= - = -

π c π c
r c M  

Of course, terms , , ,( , )o
k i k i k im r c  and , ,( , )o

k k i k ip r c  being defined by discrete choices does not raise 

severe computational issues for solving the crop acreage choice problem described above. 

Yet, using term , ,( , )o
k k i k ip r c  allows considering crop k as a single activity in PMP models. 

4.4.2. Smoothing devices 

The issues raised by the severe discontinuities in , ,( , )k i k ir c  of functions , , ,( , )o
k i k i k im r c  and 

, ,( , )o
k k i k ip r c  can be overcome by approximating these terms by functions that are smooth in  

, ,( , )k i k ir c  (e.g, Bertsekas, 1996). If such approximations are of little interest in MP models 

assuming that farmers use a single technology for each crop, these can be useful in 
econometric models (e.g., Devilliers et al, 2021) or, as discussed below, in MP models 
assuming that farmers can use several technologies per crop.  

Term , ,( , )o
k k i k ip r c  can be suitably approximated by the so-called log-sum-exp term: 

( )1
, , , , , ,( , ) ( , ; ) ( ) ln exp{ ( )}

k

o m m
k k i k i k k i k i k k k k i k im

r cp p r r r-

Î
= -år c r c%;

M
 

if tuning parameter 0kr >  is sufficiently large.29 An alternative solution is provided by 

, , , , , ,( , ) ( , ; )( )
k

o m m m
k k i k i k k i k i k k i k im

r cp w r
Î

-år c r c;
M

 

 

29 This follows from the well known property stating that , , , ,lim ( , ; ) max { }
k k

m m
k k i k i k m k i k ir cr p r®+¥ Î= -r c%

M . 
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where: 

, ,
, ,

, ,

exp{ ( )
( , ; )

exp{ ( )}
k

m m
k k i k im

k k i k i k n n
k k i k in

r c

r c

r
w r

r
Î

-
=

-å
r c

M

  for  km Î M  

also assuming that tuning parameter kr   is sufficiently large.30 

This second solution approach can be especially useful in cases where term , ,( , ; )m
k k i k i kw rr c%  

can be interpreted as the share of the acreage of crop k grown under technology m. In such 

cases, values of terms kr  and ,k ic  can be adjusted for calibration purpose. The elements of 

,k ic  can be used as share shifters, while parameter kr  determines technology choice 

responsiveness to financial incentives given that 1
, ,( , ;0) (1 )m

k k i k i kMw -= +r c% . In such cases, 

however, use of terms , ,( , ; )m
k k i k i kw rr c%  requires an alternative background to that considered 

here.  

 

5. PANEL SMOOTH TRANSITION REGRESSION MODEL 
OF DAIRY FARM PRODUCTION CHOICES31  

5.1. Introduction  

Farmers’ capability to adjust their production choices in response to external events (e.g. 
changes in market conditions, climatic events, policy reforms), allows them to benefit from 
the events or to limit the profit loss induced by them. The closely related concepts of 
resilience, adaptive capacity and flexibility are indeed put forward as key elements of farms’ 
economic sustainability in the face of increasing climate variability and volatility in agricultural 
markets (Reidsma et al., 2010; Robert et al., 2016). Although several economic studies have 
focused on farmers’ long term adaptation to global changes, few studies have considered the 
adaptive capacity of farms in the short run. Yet, as pointed out by Darnhofer (2014), the ability 

 

30 This follows from another well known property stating that , ,lim ( , ; ) 0
k

m
k k i k i kr w r®+ ¥ =r c%  if , , , ,

m m n n
k i k i k i k ir c r c- < -  

for / { }kn mÎ M  while 1
, , , ,lim ( , ; ) (argmax { })

k k

m m m
k k i k i k m k i k icard r cr w r -

®+¥ Î= -r c% M
 if , ,argmax { }

k

m m
m k i k im r cÎÎ -M

. Of 

course, , ,lim ( , ; ) 1
k

m
k k i k i kr w r®+ ¥ =r c%  if , , , ,

m m n n
k i k i k i k ir c r c- > -  for / { }kn mÎ M .  Note also that 

, ,( , ; ) 1
k

n
k k i k i kn

w r
Î

=å r c%
M

 and , ,( , ; ) (0,1)m
k k i k i kw r Îr c%  for kn Î M . Indeed, the functional form of term 

, ,( , ; )m
k k i k i kw rr c%  is that of the probability functions the well-known Multinomial Logit discrete choice model. This 

probabilistic model was proposed D. McFadden in the 70s. It now is the workhorse of discrete choice 
econometric analysis. 
31 This entire section has been submitted, and is currently under review in the European Review of Agricultural 
Economics, under the name Heterogeneous farmers’ responses to price variations: Identifying dairy farms 
flexibility using a panel smooth transition regression approach”. The authors are Elodie Letort and Fabienne 
Femenia. 
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of farmers to temporarily reallocate their resources when a disruption occurs, such as a 
sudden price decrease or a short drought, is also an important issue.  

The short-run adaptive capacity of farms, which we refer to here as “farm flexibility”, is of 
particular interest in the case of dairy farming for several reasons. First, milk and feed 
concentrate prices tend to vary a lot from one year to the other, implying that dairy farms 
have to cope with significant variations in both output and input prices. Second, although 
dairy production can be impacted by various external events, the impact of these events 
depends on the management strategy of the farms, in particular their feeding strategy. Maize 
silage-based production systems, which are highly represented in our sample, are both 
dependent on imported (concentrate) feed used to supplement maize and on climatic hazards 
which have significant impacts on yields. Yet, as shown in the technical livestock production 
literature (Peyraud et al., 2010), dairy farms do in fact have some degree of flexibility to adjust 
their feeding strategy in the short run in order to be more resilient to price and climate shocks, 
by adopting mixed feeding systems, diversifying their pasture, and using concentrates when 
necessary.   

While flexibility appears as a key aspect of the economic performance of farms, economic 
studies of farm production decisions generally find low elasticities of input uses and acreage 
choices in the short run. Most of these studies actually focus on crop production decisions. 
Böcker and Finger (2017), for instance, conduct a meta-analysis of the price elasticities of 
pesticides demand and conclude to the inelasticity of this demand with elasticity values 
significantly lower than 1 in absolute terms. Crop acreages are also found to be inelastic to 
crop price changes by Carpentier and Letort (2012) with elasticities ranging from 0.1 to 0.3. 
Only few economic studies have been conducted on the price responses of input and acreage 
choices in livestock farms. One exception is Suh and Moss (2017) who also find input use to 
be price inelastic in dairy farms with an elasticity of demand for silage maize equal to -0.23. 

This apparent rigidity of farm production decisions in the short run should however be 
considered in the light of the heterogeneity of farm behaviors. Price responses revealed in 
the above-mentioned studies indeed correspond to average behaviors, common to all farms 
for a given specialization in a given region.  Yet these behaviors can differ from one farm to 
the other due to several (often unobserved) factors.  

Our objective in this paper is to identify the heterogeneity in the flexibility of dairy farms 
based on their observed short run responses to input and output prices. Recent empirical 
works dealing with dairy farm heterogeneity have essentially focused on the heterogeneity in 
production technologies among farms. The most standard approach used in these studies is 
to make an ex ante classification of farms based on a priori knowledge and assumptions about 
differences in technologies, and, in a second step, to estimate parameters characterizing the 
production technology for each of group of farms (see e.g., Kumbhakar 2009). More 
elaborated approaches have also been proposed to simultaneously estimate production 
technologies and the probabilities for each farm to belong to a technological group (Alvarez 
and del Corral 2010, Sauer and Paul 2013, Renner et al. 2021). What all these methods have 
is common is that the identification of different technological groups is based on the use of 
observed criteria aimed at characterizing farm production practices. The approach we 
propose here goes further in the analysis of farms’ and farmers’ production heterogeneity. It 
allows revealing the heterogeneity of farms based on econometric estimations, without 
having to a priori define ad hoc criteria characterizing this heterogeneity. Our approach allows 
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for a differentiation of farms based on their observed responses to price changes, and enables 
an ex-post analysis for identifying potential specific practices or farm structures characterizing 
different groups of farms emerging from estimation results.  

Very few works have in fact focused on the heterogeneity of farmers’ responses to market 
prices. Koutchadé et al. (2018) is one exception. These authors use a random parameter 
approach to account for the unobserved heterogeneity of farmers’ behaviors and show that 
price elasticities of farmers’ yield, input use and acreage choices do in fact display a significant 
heterogeneity among farms, even in a sample of relatively homogeneous farm specialized in 
crop production in a small geographical region.  Our approach differs from that of Koutchadé 
et al. (2018), who address the heterogeneity in farms’ behavior from a statistical view point, 
in that we aim at providing an economic explanation to the relative rigidity or flexibility of 
farms. A lack of flexibility in the responses of farm production decisions to market prices can 
in fact be due to the existence of adjustment costs related to the rigidity of quasi-fixed inputs 
or to additional administrative or transaction costs incurred by the farm when adjusting its 
variable input levels.  

Different methodological frameworks, which are reviewed in the first section of this article, 
have actually been developed in the economic literature to account for the impacts of 
adjustment costs on farm production decisions. However, these frameworks essentially aim 
at analyzing farm behaviors in the medium or long term by focusing on the adjustment 
costs of capital (e.g. Gardebroek and Oude Lansink, 2004; Pietola and Myers, 2000) but do 
not consider the adjustment costs incurred by farms when adjusting their variable inputs in 
the short run. The approach we propose here relies on the works of Önel (2018a and 2018b), 
who proposes a model of factor demand that implicitly accounts for the existence of 
adjustment costs in the U.S. industrial sector. This approach recognizes that, following a 
change in input prices, firms have to adjust their quantity of variable inputs, which may be 
costly due to the existence of adjustment costs. Önel argues that, in the presence of such 
adjustment costs, the adjustment of input quantities will be different depending on the size 
of the price change observed in the market. His empirical model, based on the threshold 
regression model of Hansen (2000), allows for the representation of firm behaviors in two 
regimes of inputs adjustment, one regime corresponding to their behavior in the face of small 
variations in input prices and the other to their behavior in the face of large variations. There 
is thus a switch between the two regimes of input adjustment, depending on whether the 
observed input price variations are above or below a certain threshold. This estimated 
threshold corresponds to the level of price change leading to different firm behaviors in terms 
of inputs adjustment. An industrial sector in which firms are able to rapidly adjust their 
production decisions in the face of a price shock is assumed to have lower adjustment costs. 

Our main contribution compared to the works of Önel is to consider individual threshold 
levels of price variation in order to account for the heterogeneity of adjustment costs among 
farm. We consider that, in the face of a price shock, farmers’ ability to adapt their production 
decisions reflect the level of adjustment costs they face and their degree of flexibility, and 
that this flexibility can be characterized by different ways of switching between regimes of 
input uses that are specific to each farmer. From an empirical viewpoint, we rely on the panel 
smooth transition regression (PSTR) model proposed and developed by Gonzales et al. (2005) 
and Fok et al. (2005) as an extension of Hansen (2000)’s threshold regression model allowing 
for a smooth transition between two extreme regimes. The unobserved heterogeneity of 
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farmers in their adaptation to price variations is captured in our model by considering farm 
specific random parameters in the transition function representing the way farmers switch 
from one regime to the other. Relying on farm specific transition function was also proposed 
by Fok et al. (2005). However, these authors rely on a simulated maximum likelihood 
approach to estimate their model. This approach is appropriate in the empirical case they 
consider, but is not suitable and may generate convergence issues, for the type of panel data 
generally used to estimate agricultural production models, such as those available to us, 
which have a large individual dimension but a rather limited time dimension. We thus rely on 
a different approach, a stochastic version of the expectation maximization (EM) algorithms 
originally proposed by Dempster et al. (1977), to estimate our model, which is another original 
contribution of our work. 

Our approach is applied to a panel of dairy farms located in the west of France over the period 
2007-2018. Our empirical results show differences in the feeding strategy adopted by these 
farms depending on the magnitude of price variations they face. They actually tend to 
substitute three sources of animal feed (feed concentrate, fodder maize and grassland) in 
response relatively small variations in market prices but become less flexible in their acreage 
adjustment, and thus essentially adjust their quantities of feed concentrates, in response to 
larger price variations. Our estimation results also reveal a significant heterogeneity among 
farms regarding the level of price variation up to which they keep adjusting their feeding 
strategy in a flexible way. An ex post analysis of our results allows highlighting some specific 
features of the most flexible farms, which appear to be more autonomous financially and 
more self-sufficient in terms of animal feed.  

The rest of the paper is organized as follows. A first section is devoted to a literature review 
on the structure of adjustment costs in agricultural sectors in presented. Our empirical model 
of dairy farm input use decisions allowing to identify their flexibility at individual levels is 
presented in a second section. The estimation strategy used to estimate this model is 
described in a third section. Our empirical results are presented and discussed in a fourth 
section. Finally we conclude.  

 

5.2. Literature review on farm adjustment costs  

Different methodological frameworks have been developed in the economic literature to 
account for the impacts of adjustment costs on firm production decisions.  

The first category of approaches focuses on firm investment decisions using dynamic models. 
In the agricultural economics literature, the existence of adjustment costs prevent farms from 
immediately adjusting their capital or labor stock, hence their output level and variable input 
quantities (e.g. Gardebroek and Oude Lansink, 2004; Pietola and Myers, 2000). The rigidity of 
capital is confirmed in livestock sectors, especially for pig farms, which have particularly been 
studied given the important investments they require to expend (Pietola and Myers, 2000; 
Gardebroek and Oude Lansink, 2004; Boetel et al. 2007). The growing literature on 
investment has resulted in the improvement of theoretical and empirical models of farm 
investment decisions. As a result, the structure of adjustment costs is increasingly discussed. 
Lansink and Gardebroek (2004) notably propose to relax the assumption usually made that 
all farms exhibit the same structure of capital adjustment costs. Their empirical application 
confirms the heterogeneity of adjustment costs, which allows them to identify groups of 
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farms with similar structure of adjustment costs. These models of farm investment are 
however designed to analyze long-term behaviors of farms, which is not our purpose 
here. Our main concern is to obtain information on short-term farm production decisions that 
do not require investment or technological change.    

Some micro-econometric models of short-term crop production decisions (Carpentier and 
Letort, 2012 and 2014; Koutchadé et al., 2018) rely on a concept borrowed from the Positive 
Mathematical Programming (PMP) literature (Howitt, 1995) and introduce implicit 
adjustment costs of acreage in their objective function in order to account for crop 
diversification motives in acreage choices. This type of approach implicitly considers that 
farmers are restricted in their acreage choices by agronomic and technical constraints. For 
example, an expected work peak, a lack of machines and/or a greater risk of pests prevent 
farmers to specialize in a single-crop farming. Koutchade et al. (2018) make a significant 
improvement to this modelling framework by considering farm-specific parameters, 
especially in the implicit acreage adjustment cost function of the model. A random 
parameters specification actually allow them to account for heterogeneous responses of crop 
producers to economic drivers. Their empirical application confirms the heterogeneity of 
acreage adjustments costs in cereal farming, and shows that ignoring the variability in the 
considered farmers’ responses to economic incentives may lead to poor estimation of 
production decisions. However, this approach does not directly take into account the 
existence of costs induced by the adjustment of variable inputs, such as fertilizers or 
pesticides, which may be more or less important depending on the level of adjustment 
required, as are the costs of adjusting capital. Moreover, although all the parameters of their 
model are farm-specific, they implicitly consider that differences in input decision behavior 
among farmers can be attributed to the heterogeneity of their production technology, not by 
the heterogeneity of their adjustment cost structure.   

A third modelling framework, recently proposed by Önel (2018a and 2018b), is of particular 
interest for our purpose. This approach recognizes that, following a variation in input price, 
firms have to adjust their quantity of inputs, which may be costly, and that, in the presence 
of adjustment costs, the adjustment of input quantities will differ depending on the 
magnitude of the price variation. Two cases are in fact possible, depending on the structure 
of adjustment costs faced by the firm. On the one hand, if adjustment costs are convex, these 
costs increase with the adjustment of input quantities, implying larger price elasticities of 
input for smaller price variations. On the other hand, if adjustment costs are non-convex, they 
are non-increasing with the adjustment of input quantities, implying larger price elasticities 
of input for higher price variations: in that case, a small adjustment of input quantities, 
following a small variation in market price, is costly compared to the profit gained from this 
small adjustment. Firms will thus adjust more their inputs for large price variations. Önel 
(2018a) uses a threshold regression model (Hansen, 2000) of input demand to implicitly 
account for these adjustment costs. In this model, the price elasticities of input are allowed 
to vary depending on observed input price variations. More precisely, the price parameters 
of the model take one value below a certain threshold level of price variation and another 
value above this threshold. For our purpose, the advantage of this approach is that 
adjustment costs concern quasi-fixed inputs, but also variable input uses, making this 
approach adapted to the analysis of short-term behaviors. Önel proposes this framework with 
the primary objective of highlighting the non-linearity, and potential non-convexity, of input 
adjustment costs. At the same time, his empirical application allows him to compare 
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adjustment costs structure between industrial sectors of the United States. Note that he 
assumes that the structure of adjustment costs are identical for all firms within each industrial 
sector.  

Here we propose an approach that builds on Önel’s framework and introduce some specific 
features in our model in order to better represent the heterogeneity of farms flexibility in 
terms of input uses. In particular, we do not consider only two possible regimes of input 
adjustment in response to price variations, common to all farms, but a continuum of regimes 
specific to each farm. As explained in the next section, this is achieved by relying on a PSTR 
model in which we introduce random parameters to represent farm-specific transition 
functions.  

 

5.3. Modelling framework 

Our theoretical framework, presented in the first sub-section, builds upon Chambers and Just 
(1989)’s farm profit maximization problem in the presence of fixed allocable inputs. It 
provides a reference point for the development of the empirical threshold model described 
in the second sub-section.  

5.3.1. Model of livestock farms’ production decisions 

We focus here on the short-term production decisions of dairy farmers, who allocate one 
fixed input, land, among three feeding sources produced on the farm (fodder maize, grassland 
and cereals) that are complemented by feed concentrate to produce milk. Since we are 
dealing with short-run production decisions, we assume their herd size to be fixed. As most 
works focusing on  heterogeneity in farm production behaviours (Alvarez and del Corral 2010, 
Sauer and Paul 2013, Koutchadé et al. 2018, Renner et al. 2021), we assume that farmers are 
risk neutral. 

Our modelling framework relies on the farm profit maximization problem in the presence of 
fixed allocable inputs proposed by Chambers and Just (1989), and generalized by Fezzi and 
Bateman (2011) to fit the case of dairy farms by allowing the number of possible land 
allocations to be different from the number of possible farm outputs. As shown in Fezzi and 
Bateman (2011), by specifying the farm profit per area as a normalized quadratic function, 
optimal input use and acreage shares equations can be expressed as a system of reduced 
form equations as: 

 0 1 2
j j j j j
it i it it ity a e¢ ¢= + + +z α x α  (1) 

 

Subscripts i and t respectively denote the cross-sectional and time dimensions of our panel 
data and superscript j  belongs to J , the set of livestock farmers’ acreages and input uses 

choices we consider, namely cereals, grassland and fodder maize acreages and feed 

concentrate purchases. The vector of dependent variable   ), ( j
it ity jº Îy J  contains acreage 



 

REPORT 3.4 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

72 

 

shares32 and feed concentrate quantities. ,( / w , / w )it it nit it n itºx p w  contains a set of output 

and input prices normalized by the price of one input n (pesticides in our case). The prices 
considered in the acreage shares equation are those observed at the time farmers take their 
land allocation decisions, while those entering the feed concentrate equation are those 
observed at the time of feed concentrate purchases. Farmers may actually adjust their use of 
concentrates after observing the yields cereals, fodder maize and grass produced at the farm. 
Other observable factors that can potentially have an impact on farmers’ production decisions, 
such as market prices not included in itx  or weather conditions, are included in itz . The 

parameters included in vector 1
jα , respectively vector 2

jα , capture the effects of itz , 

respectively itx , on j
ity . In model (1), these effects are assumed to be common to all farms 

and farmers. The 0
j
ia  additive term is a random farm-specific parameter aimed at capturing 

the effects of unobserved factors, such as farmers’ skills or farms natural endowments, on j
ity . 

Finally, j
ite  is a stochastic error term.  

 

5.3.2. Threshold model of livestock farms’ production decisions 

The linear model of agricultural production decisions presented above does not account for 
potential costs incurred by farmers when adjusting their inputs in response to price variations. 
In fact, it assumes homogenous reactions of farmers to any level of price change. Yet, a 
change in input quantities following a change in input or output price might be costly for 
farmers. There may exist direct adjustment costs such as transportation costs, training costs, 
costs arising from changes in contracts, etc. Adjustment costs may also be caused by the 
rigidity of quasi-fixed factors, since variable input use is tied to the amounts of capital 
equipment, the structure of labour and the allocation of land. For instance, important 
decrease in the use of concentrates to feed animals requires producing more fodder crops or 
encouraging grazing pasture. It involves a reorganization of the farm and a new land allocation 
in order to convert cropland to pasture and/or fodder crops. Farmers may also need new 
machinery and more workers to produce on-farm animal feed. Farmers might thus 
significantly adjust their animal feeding strategy for large price shocks only (non-convex 
adjustment costs), or, on the contrary, be more responsive to smaller price shocks that imply 
smaller adjustments of animal feeding (convex adjustment costs).  

As in Önel (2018), we modify our empirical model to implicitly account for the existence of 
adjustment costs that cause farmers' responses to variations in input and output prices to 
differ depending on the magnitude of those variations. We thus propose a modelling 
approach based on a threshold regression model in which parameters associated to price 
variables can vary according to a regime-switching mechanism that depends on a transition 
variable. We use the absolute variation in an input price to output price ratio compared to 
the previous year as transition variable. This transition variable actually allows us to represent 
the price signal perceived by farmers, who take their production decisions based on the 
evolution of both input and output prices. This variable indeed takes on small values if input 

 

32 Only fodder maize and grassland acreage shares are included in the model, the cereal acreage share 

being redundant since it can be computed  by difference. 
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and output prices do not vary much from year to year or if they vary in the same direction, in 
which case the price ratio is stable.  Finally, while Önel’s model relies on Hansen’s threshold 
regression approach, we use a PSTR model based on the works of Gonzales et al. (2005) and 
Fok et al. (2005) to allow for individual threshold parameters.  

The threshold version of our model can be written as:  

 0 1 1 2
j j j j j j
it i it it it it ity Ga e¢ ¢ ¢= + + + +z α x β x β  (2a) 

where it itG x  is a vector containing the product of each component of itx  with itG , the value 

taken by function G  for farmer i in year t. G  is a transition function, normalized to be 
bounded between 0 and 1. As proposed by Gonzales et al. (2005), introducing this transition 
function in the model allows representing a smooth transition between two regimes of 
responses to price variations, contrary to Hansen (2000)’s threshold regression approach  that 
only allows for an abrupt transition between the two regimes. G  is a continuous function of 
an observable transition variable itq  and depends on farm-specific random parameters, ig  

and ic , that respectively reflect the speed and the threshold of transition.  

This transition function has a logistic form: 

 ( )
1

( ; , ) 1 exp[   ( )]it i i i it iG q c q cg g
-

= + - -  (2b) 

With 0. ig > This smooth transition regression approach may be interpreted in two distinct 

ways. First, we can consider that there are two extremes regimes associated with the two 
extremes values of the transition function:  0itG =  and   1itG = , and that farmers 

progressively move from one regime into another. The response of jy  to changes in prices 

contained in x  is given by 1
jβ  in the first extreme regime and by 1 2

j j+β β  in the second 

extreme regime. Second, this might be regarded as an infinity of regimes and possible values 

for the price response parameter are 1 2  j j
itG+β β , depending on the value of itq .  

Our model differs from the model originally proposed by Gonzales et al (2005) in that we 
consider individual-specific parameters in the transition function. To our knowledge, Fok et 
al. (2005) is the only paper that considers individual threshold parameters. These authors 
examine the existence of common nonlinear business cycle features in 19 US manufacturing 
sectors based on a multi-level smooth transition model. However, their approach is best 
suited to time series panels of data (i.e., data with a large temporal dimension and a small 
cross-sectional dimension), whereas our data contain observations for a large number of 
farms over a relatively short period of time, as is typically the case for samples of farm 
accounting data used to estimate farmers' behavior.  
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Figure 7. Approaches of Hansen and Gonzales: standard and smooth threshold regression model 

Figures 7 and 8 graphically illustrate the differences between our approach and those of 
Hansen (2000) and Gonzales et al (2005). These graphs report the value of the transition 
function G  according to the value of the transition variable q. For each approach, farmers are 
in the first regime when the transition function is equal to 0 and in the second regime when 
the transition function is equal to 1. The difference between the two approaches lies in the 
way farmers switch from the first to the second regime.     

In Hansen (2000)’s model illustrated by the left-hand graph on Figure 7, the transition 
between the two regimes consists in a jump at a threshold level ,  ,c  which is the same for all 

farmers. Gonzales et al’s model, illustrated by the right-hand side graph in Figure 7, allows for 
a smooth transition between the two regimes, the speed of this transition being characterized 
by a parameter g  also common to all farmers. Our approach, illustrated by the graphs in 

Figure 8, simultaneously allows for individual threshold and speed of transition levels.  

 

 

Figure 8. Our approach: individual smooth threshold regression model 

Our model has the advantage to contain all others models. If the threshold of transition is not 
significantly different between farmers and the speed of transition tends toward infinite, our 
model reduces to the threshold model of Hansen (2000). If the threshold and the speed of 
transition are not significantly different between farmers, we obtain the smooth threshold 
model of Gonzales et al. Finally, if the speed of transition tends towards zero, our model 
reduces to a linear random parameters model.  
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5.3.3.  Heterogeneity of farm adjustment costs and flexibility 

We explain here how our proposed modelling framework can be used to characterize 
adjustments costs and determine the level of flexibility of each farm.  

The starting point of our analysis is the characterization of the two extreme regimes in our 
model. In fact, the analysis of farmers’ behavior depends on the values of parameters that 
characterize each regime. As a reminder, the two extreme regimes are similar for all farmers. 
The first regime corresponds to a context of very small price variations (or, at least, to a 
context where both input and output prices vary in the way) and the transition function is 
equal to 0. The second extreme regime corresponds to a context of large variations in either 
output or input price (or a context where input and output prices vary, even moderately, in 
opposite directions) and the transition function is equal to 1. Of course, the parameters 
characterizing farmers’ behaviors in these regimes are obtained from the estimation of the 
model. Two cases are possible. In the first case, farmers are more responsive to small than to 
large price variations. That case can arise when adjustment costs are convex and increase 
with the adjustment of input quantities that is required in response to a price variation. In a 
second case, farmers are more responsive to large than to small price variations. That case 
can arise if adjustment costs are non-convex and a small adjustment of input quantities, 
following a small price variation, is costly compared to the benefits generated by the input 
adjustment. Input price elasticities are higher in the first than in the second extreme regime, 
and conversely, in the second case input elasticities are higher in the second regime.  

We can then analyze how each farmer switches from one regime to the other by comparing 
the two farm-specific parameters of the transition function in our model, namely the 
threshold ic  and speed of transition level ig . Our interpretation is that a farmer tends to 

switch smoothly and slowly from one regime to the other (small ig ) when this switch requires 

an investment in capital or labour, or a change in production technology. In fact, as in dynamic 
models of investment decisions, this lack of flexibility may be explained by the rigidity of 
quasi-fixed inputs. Our interpretation of the threshold level ic .  is slightly different. We use 

this parameter to characterize the capacity of farmers to adapt their short-term production 
decisions. Consider for instance a case where the transition from one regime to the other is 

quite abrupt and quick (high ig ) for all farmers. In a case of convex structure of cost 

(described by a higher input use elasticity in the first regime), a farmer characterized by a high 
threshold level probably faces less adjustments costs than the others. In fact, she/he is able 
to adjust her/his short-term production decision for a wider range of price variations. She/he 
will switch to the second regime only when the price variations will be too large and will 
induce too important adjustment costs. In this case, several factors can explain the 
flexibility/rigidity of farmers, depending on the farming system (share of grassland, farm-
produced feed, etc…), the structural features of the farm (total area, fragmented plots, etc…) 
or the managerial ability of the farmer. 

 

5.4. Estimation strategy  

This section presents the distributional assumptions and the approach we use to estimate the 
PSTR model defined by equations (2a) and (2b).  
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5.4.1. Distributional assumptions  

Each equation of our model of dairy farmers’ production choices comprises fixed parameters  

1
jβ , 2

jβ   and 2
jα , and two types of random components : (i) random parameters that includes 

the additive farmer-specific effects 0
j
ia  and the parameters of the transition function, ig  and  

ic  and (ii) the error term of the model, j
ite . Let vector 0( , , )i i i icgº αδ , with  0 0(  ,  )j

i i jaº Îα J , 

collect the model random parameter and vector (  ,  )j
it it jeº Îε J  collect the error terms. We 

assume that the random parameters follow a normal distribution with ( ),i ~ μ Ωδ N . This 

probability distribution describes the distribution of the random parameters across the 
farmers’ population represented in our considered sample. We do not impose any restriction 
on the structure of Ω  and hence allow all farmer-specific effects (including the parameters 
of the transition function) to be correlated between them and across equation. This notably 
allows capturing the potential correlation between the production decisions of each farmer, 
which could for instance be attributed specific skills of farmers or to natural endowments of 
farms. The error term vector is assumed to be normally distributed with ( , )it ~ε 0 ΨN . We 

assume the covariance matrix Ψ  to be diagonal, which implies that the error terms of the 
model are independently distributed across time. This assumption is not too restrictive here 
since price and climatic shocks, which are the main elements that could potentially 
simultaneously impact all farmers production decisions in the short run, are captured by the 

effects of exogenous variables in itx  and itz  Finally, we assume that random parameter 

vector iδ , error term vector itε , price variables included in itx  and control variables included 

in itz  are mutually independent and that itx  and itz   are strictly exogenous with respect to 

these error terms. These are standard assumptions in short panel data econometric models 
of farmers’ production choices (see e.g., Koutchadé et al, 2018). 

5.4.2. Estimation approach 

The parameters we seek to estimate comprise the price effects, 1
jβ  and 2

jβ , and control 

variables effects, 2
jα , in each equation. These fixed parameters are collected in vector 

1 2 2( ,   , ,  )j j j jº Îθ β β α    J . We also seek to estimate parameters μ  and Ω , characterizing the 

distribution of the random parameters, and the covariance matrix of random terms,Ψ .  

Our model being fully parametric, we rely on a maximum likelihood (SML) approach for its 
estimation. The sample log-likelihood is equal to a sum of log-likelihoods associated to each 

individual farm: ln ln i

i

= å lL . The individual likelihoods, can be expressed as: 

 ( , , , ) ( | , ; , , ) ( ; , )i i i if g d= òδ
θ Ψ μ Ω y x z δ θ Ψ δ μ Ω δl  (3) 

( | , ; , , )i i if y x z δ θ Ψ  denotes the probability density function of the observed sequence of 

production choices of farmer i, ,y i  conditional on exogenous variables, ix  and iz , and on 

individual random parameters, iδ . ( ; , )g δ μ Ω  denotes the probability density function of the 

random parameter vector, iδ . 
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Maximizing the sample likelihood would involve the computation of as many two-dimensional 
integrals as the number of farms in our sample. Econometricians generally rely on Simulated 
Maximum Likelihood (SML) approaches to solve such optimization problems. This is the 
choice made by Fok et al. (2005) for the estimation of their model, which is comparable to 
ours from that point of view. The maximization of the simulated likelihood is however further 
complicated by the nonlinear form of the transition function  itG  which depends on random 

parameters  iδ  and enters the explanatory variables of the model. To overcome this issue, 

Fok et al. (2005) use a two-step iterative procedure involving, in a first step, the maximization 
of the sample simulated likelihood for given values of the transition function parameters, and, 
in a second step, the solve of a numerical optimization program to find transition function 
parameters. This two-step procedure is however quite involving and its convergence not 
guaranteed, especially in our case where the individual dimension of our panel dataset is 
much larger than its time dimension (i.e. our sample contains a large number of individual 
farms for which we few observations over time). We do not use this two-step procedure here 
but instead rely on a Stochastic Approximate expectation-maximization (SAEM) algorithm 
which is a specific type of Monte Carlo expectation-maximization (MCEM) algorithms (Lavielle, 
2014). MCEM algorithms are frequently used by statisticians when faced to complex 
likelihood maximization and allow the computation of estimators that are asymptotically 
equivalent to ML estimators. Technical details on these algorithms, on the SAEM algorithm in 
particular, and on their use for the estimation of micro-econometric random parameters of 
agricultural production choices can be found in Koutchadé et al. (2018 and 2021). Here the R 
software was used to implement the SAEM algorithm and estimate our model. The codes are 
available from the authors upon request.    

 

5.5. Empirical illustration: the case of French dairy farms 

5.5.1. Data  

Our model is estimated on a data sample, provided by a French farm accounting agency. This 
unbalanced panel dataset contains 5,412 observations of 714 dairy farms located in the West 
of France and observed between 2007 and 2018. The three dependent variables of our model, 
i.e. the quantities of concentrates, the share of fodder maize acreage and the share of 
grassland acreage, as well as the milk and feed concentrate prices observed by farm and by 
year are observed in this database. The other input and output prices used as explanatory 
variables in the model (fertilizer, pesticide and cereal prices) are price indices provided by the 
French Department of Agriculture. We also use make use of data provided by the French 
national meteorological service (Météo France) to build climate indicators used as control 
variables in the model. Although our sample covers a relatively small area, climate conditions 
are in fact likely to have an impact on dairy farmers' production decisions, especially for 
maize, which is very sensitive to water and heat stress during the spring and summer 
periods33. We construct two cumulative rainfall indicators: one for the months of June and 

 

33 Climatic conditions (precipitation and temperature) may have important impacts on the yield and energy content 

of grass and maize fodder. In face of these climatic events, farmers will adjust the amount of concentrates in order 

to maintain a balanced feed ration. 
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July and one for the months of August and September. A third indicator is constructed by 
summing the number of days during which the temperature exceeded 29 degrees Celsius, 
which corresponds to the maximum temperature beyond which maize development is slowed 
and its growth reduced (Girardin 1998). 

Table 11 bellow reports some descriptive statistics of these variables. Our sample appears to 
be relatively homogenous in terms of production system, since all farms produce fodder 
maize, grassland and cereals and make use of concentrates to feed their animals. The farms 
in our sample are located in the French territorial division Ille-et-Vilaine in the Brittany region, 
which is the first French dairy region, producing 20% of the national production. Dairy farms 
in this area mostly rely intensive forage systems, characterized by fairly high levels of milk per 
cow, moderate use of pasture, and rather extensive use of supplementary feeding based on 
concentrates. 

 

 

 

 

 

 

 

Table 11. Descriptive statistics of the sample 

 Sample Average Standard Deviation 

Quantity of feed concentrate used 
(ton/cow) 

1.20 0.56 

Fodder maize acreage share 0.28 0.08 

Grassland acreage share 0.45 0.12 

Milk price (€/liter) 0.32 0.22 

Feed concentrate price (€/kg) 0.27 0.06 

Cereal price index (1 in 2015) 1.03 0.21 

Fertilizer price index (1 in 2015) 1.00 0.19 

Total available land (ha) 67.18 23.68 

Quantity of milk produced (1000 l/cow) 7.09 1.25 

Animal density (cow/ha) 1.12 0.24 

Rainfall at flowering (in mm) 111.77 41.03 

Rainfall at maturation (in mm) 106.49 37.48 
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Heat (number of days) 1.69 0.99 

 

As previously mentioned, regarding the threshold variable used in the transition function of 
the model, we do exactly follow Önel (2018a and 2018b) who uses the variation, in absolute, 
of input prices compared to the previous period. We instead use the variation in the input 
(feed concentrate) to output (milk) price ratio. The evolution of this threshold transition 
variable is represented on Figure 9. The main advantage of this transition variable is to better 
characterize the economic context faced by dairy farms. Farmers can actually face four main 
types of economic context depending on the evolution of animal feed and milk prices, two of 
these contexts lead to a stable price ratio: if the milk and feed concentrates prices do not vary 
a lot or if these prices evolve in the same direction (an increase in both prices, or a decrease 
in both prices). In these contexts, farmers’ behaviors are close to the those represented in the 
first extreme regime. On the other and, the price ratio will be particularly high in absolute 
terms if only one the two prices increases or decreases significantly while the other price 
remains stable or if the two prices evolve in opposite directions. A sharp increase in milk price 
and/or decrease in concentrate price creates an economic situation particularly favorable to 
dairy farmers (this was the case in 2014). A sharp decrease in milk price and or increase in 
concentrate price leads to a bad economic situation (this was the case in 2009, 2013 and 
2016). In those type of economic contexts, farmers’ behaviors are close to those represented 
in the second extreme regime. 

 

Figure 9. Evolution of the threshold transition variable 

 

5.5.2. Estimation results 

Parameter estimates of the dairy farm production decision model defined by equation system 
(2a) and transition function (2b) are reported in Table 12.  
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The parameters of the input uses model are generally significantly estimated and lie in 
expected ranges. Our results show a negative impact of the price of cereals on the use of feed 
concentrate. Two mechanisms can indeed explain this effect depending on farmers use of 
their cereal production.  On the one hand, if cereals are cash crops intended to be sold on the 
market, an increase in cereal price will incent farmers to increase their production of cereals 
and thus reduce their fodder maize and grassland acreages. In that case, an increase in feed 
concentrates will allow farmers to compensate the loss of forage area. The same mechanism 
besides explain the positive impact of fertilizer price on forage area (through its negative 
impact on cereal acreage) and negative impact on feed concentrate. On the other hand, if the 
cereal production is used by farmers to feed animals on their farms, an increase in the price 
of cereals will change the comparative advantage of feed concentrate compared to cereals in 
favor of concentrates.  

 

 

 

 

 

 

Table 12. Parameters estimates 

Input uses equation system 

 
Quantity of feed 

concentrates 
Share of fodder 
maize acreage 

Share of grassland 
acreage 

Distribution of individual farm effects 𝜶𝟎𝒊 

Mean -0.54** 0.53** 0.37** 

Standard deviation 0.40** 0.03** 0.10** 

Effects of price and climate variables 𝜶𝟏 

Fertilizer price -0.43* 0.15** 0.04 

Cereal price 4.14** -0.14** -0.21** 

Rainfall at flowering 0.37** -0.15** 0.09** 

Rainfall at maturation 0.28* -0.04 0.08** 

Heat 0.09* -0.04** 0.01 

Effects of milk and concentrate prices in the first extreme regime  𝛃𝟏 

Feed price -1.41** 0.08** 0.03 

Milk price 5.14** -0.72** 0.22** 

Changes in the effects of milk and concentrate price in the second extreme regime 𝛃𝟐 

Feed price -0.52** -0.10** -0.02 

Milk price 0.37** 0.06** 0.03 
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Transition function 𝑮 

Distribution of threshold parameters 𝒄𝒊 

Mean 0.11** 

Standard deviation 0.02** 

Distribution of the speed of transition parameter 𝜸𝒊 

Mean 0.42** 

Standard deviation 0.02** 

Note: **, resp.*, denotes estimated parameters significantly different from 0 at the 5%, resp. 10%, level  

Climate conditions primarily affect the composition of the feed ration. Our results suggests 
that an increase in precipitation and high temperatures lead to an increase in the use of 
concentrates. Under unfavorable conditions characterized by excess water or high 
temperature, maize growth can be disrupted, encouraging farmers to increase the amount of 
concentrates to supplement the feed ration. The impact of weather variables on crop acreage 
decisions is a bit less straightforward. Rainy conditions in the spring, favorable to grass growth 
and quality, seem to encourage farmers to produce more grass at the expense of maize 
fodder.   

We now turn to our main parameters of interest, characterizing the flexibility of dairy farmers’ 
in their responses to milk and feed concentrate price variations. Our estimated parameters in 
the first extreme regime, 1β , representing farmers behaviors in the case of very small 

variations in the input to output price ratio, show a negative impact of the price of feed 
concentrate on the quantities of concentrates purchased by farmers, and a positive impact 
on the acreage share of fodder maize, which is a substitute for concentrates. The effects of 
milk price on both feed concentrates and grassland acreage are in that case positive. This 
suggests that an increase in milk price can encourage farmers to stimulate their milk 
production by increasing their ration of feed concentrate, and/or by exploiting the benefits 
of grass. In fact, early grass silage, which is rich in energy and protein, stimulates cows 
appetite and their production of milk. Both of these choices (increase of feed concentrate or 
grassland acreage) lead to a decrease in the use of fodder maize to feed animals, hence the 
negative of milk price on fodder maize acreage.  

Estimated 2β  parameters represent the changes in dairy farmers’ behaviors when the market 

conditions they face change drastically. The significance of these estimates highlights the non-
linearity of dairy farmers inputs adjustment in responses to input and output price variations. 
Our results show that when farmers face important change in input to output price ratio, the 
impacts of prices on quantities of purchased feed concentrates are strengthened. In fact, the 
second extreme regimes is characterized by more pronounced responses of feed 
concentrates to milk and concentrate prices, indicating a non-convex structure of adjustment 
costs. On the contrary, the impacts of prices on land allocation appear to be smaller, 
indicating a convex structure of adjustment costs in the case of acreage adjustment. This 
result is comparable to that found by Antle and Capalbo (2000). In an economic context 
characterized by small variations in the price ratio, farmers respond to price changes by 
adjusting the amount of concentrates feed and the allocation of their land between grassland 
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and maize. Larger changes in prices would require larger adjustments in land allocations. 
However, the adjustment costs of making larger changes in land allocation are too high, since 
farmers are constrained by the availability of equipment and labor. The only possible 
response to a price change is then to intensify practices and increase the use of feed 
concentrates.  

Last, but not least, our estimation results reveal a significant heterogeneity in the behaviors 
of our sample farmers. The estimated standard deviations of the farm specific term additive 
term 0 ia  in each input use equation are actually significantly estimated, reflecting an 

heterogeneity, in the level or intensity of input uses by dairy farmers. This heterogeneity 
might be attributed to several unobserved farms and farmers characteristics such as personal 
skills, time availability or environmental awareness for instance. More importantly, our 
results also show a significant heterogeneity in the parameters characterizing the transition 
function G . In fact, as explained above, dairy farmers tend to substitute all their feeding 
sources by adjusting both feed concentrates and forage acreages for small changes in market 
conditions but become less flexible on acreages and essentially adjust their feed concentrate 
when facing large changes on the market. The way they switch from a rather flexible feeding 
strategy to a more constrained one however varies from one farmer to the other, as reflected 
by the significant estimated standard deviations of the farm specific threshold level, ic  (equal 

to 11% variation in price ratio on average) and speed of transition, ig  (equal to 0.42 on 

average).  

The estimation procedure used to estimate our model, based on a SAEM algorithm, has the 
advantage of allowing a statistical calibration of the individual parameters of the model for 
each farmers in our sample. These parameters are computed as the mode of their simulated 
probability distribution conditional on the observed data available for each farmer (more 
detail on this calibration procedure can be found in Koutchadé et al., 2018). Once calibrated, 
the ic  and ig  parameters can notably be used to define transition functions specific to each 

farms. 

Figure 10 represents the estimated individual transition functions. More precisely, it 
represents, for each farmer, the value of the estimated transition function according the level 
of absolute variation in price ratio. The transition from one regime to another is quite fast and 
the slope of the transition function rather homogeneous among farmers. In fact, although 
significant, the estimated standard deviation of the speed of transition parameter,   il  is 

relatively small (0.02) compared to its estimated average (0.42). This might be due to the fact 
that, the second regime being mainly characterized by an increased use of concentrates, the 
decision to increase the proportion of concentrates in the feed can be made immediately and 
does not require special additional equipment. As illustrated by the graph, the estimated 
threshold of transition levels, the 𝑐𝑖 parameters, do in fact exhibit more heterogeneity, which 
is coherent with our estimation results since the average estimated standard deviation of 𝑐𝑖 
is equal to 2% for an estimated average value of 11%. The individual estimated threshold 
levels actually range from 6% to 16% in our sample farmers population. This suggests the 
existence of heterogeneity in farmers' responses to price variations, this heterogeneity being 
essentially characterized by the differences in the input to output price ratio inducing a switch 
between the two extreme regimes of input adjustments.  
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Figure 10. Estimated transition functions 

To better characterize the degree of flexibility of each farm, we illustrate the differences in 
farm behavior between the two extreme regimes in our model by computing price elasticities 
of feed concentrates and acreage shares for different values of the transition function, 𝐺. 
These elasticities, reported in Table 13, are computed at the sample average for values of 𝐺 
close to 0 (first extreme regime), close to 1 (second extreme regime), and in an intermediate 
situation when 𝐺 equals 0.5. In the first extreme regime, faced with an increase in the price 
of concentrates, farmers decrease the quantity of concentrates (-0.32) and slightly but 
significantly increase the share of land allocated to fodder maize (0.08). In the second 
extreme, an increase in the price of concentrates will encourage farmers to decrease the 
quantity of concentrates even more (-0.42), without modifying their land allocation. When 
the price of milk varies, the mechanisms remain the same. The price elasticity of the 
concentrate increases between the two extreme regimes (1.38 to 1.48), while the elasticity 
of the maize fodder decreases in absolute value (-0.82 to -0.75).  

 

Table 13. Elasticities according the level of the transition function G 

 Elasticity of concentrates Elasticity of maize fodder  Elasticity of grassland 

 
Concentrates 

price 
Milk 
price 

Concentrates 
price 

Milk price Concentrates 
price 

Milk price 

𝐺 → 0 -0.32 1.38 0.08 -0.82 0.02 0.16 

𝐺 = 0.5 -0.37 1.43 0.04 -0.79 0.01 0.17 

𝐺 → 1 -0.42 1.48 -0.01 -0.75 0.007 0.18 

These results come to illustrate that the first extreme regime is characterized by a substitution 
between different feed sources (concentrates, grass, forage) in response to price changes, 
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while in the second regime, farmers adapt to price changes by mainly modifying the quantity 
of concentrates used to feed to their animals. The switch in farm feeding strategy between 
the first and second regimes can be attributed to the existence of increasing costs associated 
with the adjustment in land allocation, which at point limit potential land adjustments. This 
suggests that farmers who move more quickly from the first extreme regime to the second 
extreme regime face more adjustment costs associated to acreage decisions and have 
therefore less degree of flexibility to adjust their feeding strategy. Since there are no 
additional costs of adjustment associated with the decision to adjust the amount of 
concentrates, the least flexible farmers seem to use them to compensate for the lack of 
flexibility in their land allocation choices. This implies that the least flexible farmers are also 
the most impacted by the highly variable price of feed concentrates.  

To support this hypothesis, we build three groups of farmers based on the level of price ratio 
variation they need to reach the second extreme regime. Farmers in the first group reach the 
second extreme regime for variation in the price ratio comprised between 26 and 31%. 
Although these farms do not regularly observe such high price variations, they start moving 
to the second extreme regime earlier than other farms, their behaviors in the face of price 
changes are therefore more rapidly similar to those characterizing the second extreme 
regime. Farmers in the second group reach the second extreme regime for variations in the 
price ratio comprised between 31 and 35%, and the third group, for variations comprised 
between 35% and 51%. Farmers in the third group are considered the most flexible, as they 
exploit the possibilities of substitution between the different components of the feed ration 
in most economic contexts34.  

Table 14 presents the characteristics of these three groups of farms. The first three columns 
of the table present the mean and standard deviation of different variables describing farming 
practices and farm structure by group. The next three columns present the difference 
between the mean of each group for each variables. T tests of mean equality between groups 
were performed in order to identify differences in means that are significantly different from 
0. The means between the group 1 (less flexible) and group 3 (more flexible) are statistically 
different for all variables. This shows some interesting features for the most flexible farms: 
they have better financial autonomy and food self-sufficiency. In addition, these farmers 
seem to have less intensive farming practices: the animal density per hectare and the 
quantities of concentrates purchased are significantly lower for that group of farms. Similarly, 
the proportion of grass in the animal feed ration is higher at the expense of concentrates. 
Finally, group 3 is characterized by a higher proportion of organic farms, suggesting that 
organic farms belong to the most flexible group of farms. The adjustment costs of the least 
flexible farms (group 1) seem to be related to their availability of quasi-fixed inputs (especially 
capital), but also to their production system: systems based on a high use of fodder maize and 
feed concentrates offer farmers fewer possibilities for substitutions between the different 
sources of animal feed. 

 

34 Note that the average variation of the price ratio is 15% in our and that the average of the maximum variation 

of the price ratio observed for each individual is 35% regardless of the group. The farmers in each group therefore 

face on average the same price variations.  
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Several studies have sought to identify the heterogeneity of production technologies in dairy 
farms in different European countries. Those studies generally use input use intensity, 
production specialization or organic farming as direct criteria to distinguish different groups 
of farms according to their production technology (Kumbhakar et al. 2009, Alvarez and del 
Corral 2010, Sauer and Paul 2013, Renner et al. 2021). These works generally conclude that 
the largest, most capital-intensive dairy farms with a higher animal density are the most 
productive ones. This type of farms appear to be relatively similar to those entering our first 
group, corresponding to the least flexible farms, suggesting that analysis of farm productivity 
may not be sufficient to evaluate the sustainability of farms and in particular their capacity to 
adapt to a highly variable economic and climatic context. 

 

 

 

 

Table 14. Characteristics of farms according their flexibility 

 
Group 1 

26%-31% 

Group 2 

31%-35% 

Group 3  

35%-51% 

Difference 
in means  

Difference 
in means  

Difference 
in means 

 mean s.d. mean s.d. mean s.d. G1 /G2 G2 /G3 G1 /G3 

Number of farmers 181 353 178    

Total area 78 25 65 21 60 22 13** 5** 18** 

Livestock density  1.16 0.24 1.11 0.23 1.10 0.21 0.05 0.01 0.06** 

Yield (liter/cow) 8 034 936 7 185 1 067 6 175 1 120 849** 1010** 1859** 

Share of grassland 0.35 0.08 0.44 0.10 0.56 0.10 -0.09** -0.12** -0.21** 

Concentrates (€/cow) 478 157 370 126 254 100 108** 116** 224** 

Share of farm-produced 
food 

0.25 0.13 0.31 0.16 0.41 0.19 -0.06** -0.1** -0.16** 

Share of organic farm 0.05 0.23 0.03 0.18 0.12 0.32 0.02 -0.09** -0.07** 

Gross margin (€/litre) 222 38 234 44 258 52 -12** -24** -36** 

Unit of agricultural workers  1.87 0.65 1.71 0.61 1.69 0.78 0.16** 0.02 0.18** 

Capital (€/1 000 litre) 907 244 903 290 973 311 4 -70** -66** 

Debts (€/1 000 litre) 390 200 347 212 348 233 43** -1 42* 

Note: **, resp.*, denotes difference in means between groups significantly different from 0 
at the 5%, resp. 10%, level. 
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5.6. Conclusion 

By relying on a panel smooth transition model, we have been able to identify heterogeneous 
flexibility of farmers in their short run responses to input and output prices variations. Our 
proposed approach to identify non-linear and heterogeneous farm behavior contributes to 
the literature in three main aspects. First, we propose a way to identify farm heterogeneity 
based on their observed short run responses to input and output prices. Our approach allows 
revealing farm heterogeneity, without the need to specify ad hoc criteria differentiating 
farms. Second, we propose an original framework in order to implicitly account for 
adjustment costs in production behavior of farmers. Our simple model allows distinguishing 
farmers according to their speed of reaction in response to price changes, and identifying the 
most flexible farmers in the short run. Third, we propose a new estimation procedure for 
panel smooth transition regression models with individual parameters characterizing the 
transition function. Our approach allows dealing with the specificity of farm accountancy 
panel data that generally have large individual and short time dimensions. 

The results we obtain on a sample of French dairy farms confirm the interest of our approach 
since we identify significantly heterogeneous production behaviors. Farms face different 
levels of adjustment costs that constrain their ability to adapt to price variations observed on 
the markets. Some farmers are considered more flexible in our approach, in the sense that 
they adjust their feeding strategy more easily to price variations. An ex-post analysis confirms 
their specific characteristics: they use less intensive, more grass-based practices, allowing 
them to be more food self-sufficiency. Organic farms are also overrepresented among the 
most flexible farms. 

Despite its originality in characterizing the heterogeneity of dairy producers in their 
adjustment to short-term price variations, we recognize certain limitations of our framework. 
First, it essentially takes into account the adjustment of the feeding strategy of farms but does 
not take into account potential adjustment of their herd size. This assumption actually allows 
improving the empirical tractability of our model and is, at least in our empirical application, 
not so strong because herd size varies very little in the short run in the sample we consider. 
Moreover, this allows our analytical framework to be directly transposable to other types of 
farmers' decisions, such as the choice of fertilizer or pesticide use for crop producers. Second, 
we focus here essentially on farmers' adjustment to price shocks, although it would also be 
interesting to analyze their adjustment to climate shocks. This could be done by considering 
a climate indicator as transition variable in the model, but would however require an index 
sufficiently synthetic to represent the impact of climate variations on all farmers' input 
choices. 

As the capability to adjust their production choices appears as a key aspect of farms’ economic 
sustainability, our approach can help identifying public actions levers in order to encourage 
farmers to be more reactive to price fluctuations. This is all the more important since currently 
input prices are high: the price of cattle feed increased by almost 30% between June 2021 
and June 2022. Given the findings of our paper, the impact of these price shocks on the input 
market will affect farmers differently depending on their ability to react, and in particular on 
their ability to substitute different feed sources. In this very volatile economic context, our 
approach can be useful to predict the impact of external shocks to input market, and 
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therefore, the effects of potential policy measures that could be taken to support farmers 
(Hamermesh and Pfann 1996). 
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6. LAND OPTIMIZATION AND GREENHOUSE GAS 
EMISSION MITIGATION OF DUTCH DAIRY FARMS 

6.1. Introduction  

We face several major but intertwined global challenges: from climate change, to environmental 
degradation, global food insecurity, increasing population growth, and poverty:. In light of these 
challenges, the dairy sector needs to reduce its environmental impact, while continuing to produce 
high-quality animal products (Food and Agriculture Organization [FAO], 2019). The Dutch dairy sector 
is highly productive, but the environmental costs from its farming activities are substantial (Hou et al., 
2016; H. J. M. van Grinsven, M. M. van Eerdt, H. Westhoek, and S. Kruitwagen, 2019; Zhu and Lansink, 
2022), which is why environmental externalities need to be considered in production analyses.  

To comply with the Paris Agreement on Climate Change, the Dutch government has developed its 
national Climate Agreement (Klimaatakkoord) (Rijksoverheid, 2022). Dairy farmers have already taken 
measures to reduce emissions of greenhouse gases (GHG), but there is an urgent need to accelerate 
the sector’s response to meet the emission reduction target (Food and Agriculture Organization, 2019; 
H. J. Van Grinsven, M. M. van Eerdt, H. Westhoek, and S. Kruitwagen, 2019). Current policies focus on 
transitioning towards a more circular agriculture, which is regarded as a cost-effective means to 
reduce GHG emissions (Food and Agriculture Organization, 2019; Ministerie van Landbouw Natuur en 
Voedselkwaliteit, 2019; Wageningen University and Research, 2022). 

Circular agriculture closes resource cycles by optimizing efficiency, recycling waste (e.g. manure), 
reducing external inputs (e.g. animal feed, artificial fertilizers, pesticides and fossil fuels), continuous 
systemic improvements, cross value chain collaboration, and decreasing possible emissions and 
negative externalities (Boer and Ittersum, 2018). Efficient production and resource optimization are 
cucial in the transition towards circular agriculture. In terms of land use, feeding animal left-over crops 
is estimated to save 25% of global crop land compared to not keeping any livestock (Van Zanten et al., 
2018). Dutch dairy farmers already upcycle manure for crop fertilizers and produce their own feed on 
the farm. However, it is not clear to what extent land reallocation between crops and grassland can 
contribute to reducing GHG emissions. 

This study aims to explore the potential for land optimization on dairy farms to simultaneously 
increase production and reduce GHG emissions. Incorporating circularity principles in an efficiency 
framework requires explicit modeling regarding the recycling of intermediate outputs, reallocating 
inputs, and reducing pollution. Focusing on U.S. dairy farms, Färe and Whittaker (1995) showed how 
recycled crop output can be modeled as a feed input in a livestock enterprise in an efficiency 
framework. Färe, Grabowski, Grosskopf, and Kraft (1997) quantified potential efficiency gains from 
reallocating land use inputs for a sample of Illinois grain farms. Focusing on English and Welsh farms, 
Ang and Kerstens (2016) combined these two aspects, and characterized the inputs as joint or output-
specific following Cherchye, Rock, Dierynck, Roodhooft, and Sabbe (2013). However, none of these 
studies considered the recycling of manure output in the crop production process. Pollution is 
generated as a by-product in the agricultural production process. The current consensus for modeling 
pollution is the by-production approach developed by Førsund (2009) and Murty, Russell, and Levkoff 
(2012). Recent applications to the agricultural sector include K. H. Dakpo, Jeanneaux, and Latruffe 
(2017), Serra, Chambers, and Oude Lansink (2014) and Ang, Kerstens, and Sadeghi (2022). To the best 
of our knowledge, no study has structurally addressed these circularity aspects within one integrated 
multi-production technology framework. The current article addresses this research gap by 
developing such an efficiency framework that allows to assess the potential reduction in GHG 
emissions. 
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This study contributes to the literature in three ways. First, it extends previous work from Ang and 
Kerstens (2016) by explicitly considering the manure cycle, that is, distinguishing the upcycled manure 
as crop fertilizers and the remaining manure that is removed from the farm. Second, this is the first 
study to combine the by-production approach with the network DEA model to analyse land allocation 
decisions on dairy farms. Third, this study provides scientific evidence for policy advice on whether 
promoting mixed dairy farming is effective in reducing GHG emissions, under a given livestock size. 
Our results show that specialized dairy farms in the Netherlands can enhance technical and 
environmental efficiency by 5.1% simultaneously (to which land optmization only contributes 0.6%). 
GHG emissions can be reduced by 11.79% if production and inputs are held constant without 
reallocating land.  

.  

6.2. Method 

In this section, we describe the network DEA model that is used to assess the performance of 
dairy farms. This model is also used to investigate the potential for land reallocation to 
increase production efficiency and decrease GHG emissions. We distinguish three 
interdependent subprocesses with their corresponding technologies. This is followed by an 
explanation of the axiomatic properties, model formulation and coordination inefficiency.   

6.2.1. Technology 

This study operationalizes two sub-technologies with intended outputs: crop production and 
livestock production. Crop and livestock outputs are modelled separately to optimize the land 
allocation between both production processes. In addition, a third residual-production 
technology is operationalized for GHG emissions. In the by-production approach to model 
pollution-generating technology, the production of intended-output sets the residual-
production technology in motion, which leads to the generation of by-product (Murty et al., 
2012).  

The network DEA model structure is shown in Figure 11. Each dairy farm is denoted by 
subscript k. Crop production and livestock production processes are linked through (i) the use 

of upcycled manure from livestock production as fertilizer in crop production (𝑚𝑘
𝐿,𝑈), and (ii) 

the use of unsold crop residuals (𝑧𝑘
𝐶  as feed in addition to the purchased feed) in livestock 

production. The total on-farm GHG emissions (𝑒𝑘) are generated by the polluting inputs (𝑥𝑘
𝐶,𝑝, 

𝑥𝑘
𝐿,𝑝 & 𝑞𝑘

𝐽,𝑝). The detailed inputs and outputs of each production technology are described in 

Table 15.  
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Figure 11. Network structure of specialized dairy farms 

 

Table 15 Inputs, outputs variables for each technology 

The intended crop production technology has the following inputs and outputs 

𝒙𝒌
𝑪 ∈ ℝ+

𝑵𝒄 aggregated crop-specific inputs, including crop protection products, purchased 
fertilizers, and seeds. 

𝒎𝒌
𝑳,𝑼 ∈ ℝ+ upcycled manure used as fertilizer for crops in the same year.  

𝒒𝒌 ∈ ℝ+
𝑴 shared joint inputs by crop and livestock processes, including aggregated input set 

(which consists of buildings, machinery & equipment, and energy consumption); as 
well as water use, and labor. 

𝒚𝒌
𝑪 ∈ ℝ+

𝑶𝑪 aggregated crop output revenues from wheat, barley, potatoes, sugar beet, 
vegetables, grass seeds, folder crops, and other arable crops. 

𝒛𝒌
𝑪  ∈ ℝ+

𝑶𝒄 unsold crop residuals used as animal feed: maize & grass. 

The intended livestock production technology has the following inputs and outputs 

𝒙𝒌
𝑳 ∈ ℝ+

𝑵𝒍 aggregated livestock-specific inputs, including animal units, purchased animal feed, 
animal health costs and animal water use. 

𝒛𝒌
𝑪  ∈ ℝ+

𝑶𝒄 unsold crop residuals used as animal feed: maize & grass. 

𝒒𝒌 ∈ ℝ+
𝑴 shared joint inputs by crop and livestock processes, including aggregated input set 

(which consists of buildings, machinery & equipment, and energy consumption); as 
well as water use, and labor. 
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The intended crop production technology has the following inputs and outputs 

𝒚𝒌
𝑳 ∈ ℝ+

𝑶𝑳 aggregated livestock output revenues from milk & milk products, cattle, eggs, poultry, 
pigs, sheep and wool. 

𝒎𝒌
𝑳,𝑷 ∈ ℝ+ surplus manure removed from the farm. 

𝒎𝒌
𝑳,𝑼 ∈ ℝ+ upcycled manure used as fertilizer for crops in the same year. 

The residual GHG emission technology has the following inputs and outputs:  

𝒙𝒌
𝑪,𝒑

∈ ℝ+
𝑵𝒑𝒄

 

polluting aggregated crop-specific inputs, including crop protection products, 
purchased fertilizers, and seeds. 

𝒙𝒌
𝑳,𝒑

∈ ℝ+
𝑵𝒑𝒍

 

Polluting livestock specific inputs, including animal units, purchased animal feeds, 
unsold crops residuals used as animal feed. 

𝒒𝒌
𝑱,𝒑

∈ ℝ+
𝒑𝒋

 other polluting inputs including energy use and total manure. 

𝒆𝒌 ∈ ℝ+
  

total GHG emissions in carbon dioxide equivalent from crop and livestock production 
processes. 

 

We now define the three sub-technologies with their production set as below.  

The intended crop production technology is:  

𝑇1 =  {(𝑥𝑘
𝐶 , 𝑚𝑘

𝐿,𝑈, 𝑞𝑘) 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 (𝑦𝑘
𝐶 , 𝑧𝑘

𝐶)}                                                                                 (1)                               

The intended livestock production technology is:  

𝑇2 =  {(𝑥𝑘
𝐿 , 𝑧𝑘

𝐶 , 𝑞𝑘) 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 (𝑦𝑘
𝐿 , 𝑚𝑘

𝐿,𝑃, 𝑚𝑘
𝐿,𝑈)}                                                                      (2) 

The residual GHG emission production technology is:  

𝑇3 =  {(𝑥𝑘
𝐶,𝑝, 𝑥𝑘

𝐿,𝑝, 𝑞𝑘
𝐽,𝑝) 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 (𝑒𝑘)}                                                                                   (3) 

The overall technology is 𝑇 =  𝑇1  ∩   𝑇2  ∩  𝑇3.  

 

6.2.2. Axiomatic properties  

The free disposability axioms apply to 𝑇1 and 𝑇2. 𝑇3 satisfies the costly disposability axiom 
(Murty et al., 2012). Costly disposability allows inefficiencies in the generation of pollution 
(Murty et al., 2012). For a given level of inputs and intended outputs, there is a minimum level 
of pollution. Pollution above this minimum level is inefficient (K. Hervé Dakpo, Jeanneaux, 
and Latruffe, 2016). 

𝑇1 is defined as:   

(𝑥1, 𝑦1) ∈ 𝑇1  ∧ 𝑥1
′ ≥ 𝑥1 → (𝑥1

′, 𝑦1)  ∈ 𝑇1   (Free disposability of all inputs);  

(𝑥1, 𝑦1) ∈ 𝑇1  ∧ 𝑦1
′ ≤ 𝑦1 → (𝑥1, 𝑦1

′)  ∈ 𝑇1   (Free disposability of all outputs).  

𝑇2 is defined as: 
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(𝑥2, 𝑦2) ∈  𝑇2 ∧ 𝑥2
′ ≥ 𝑥2 → (𝑥2

′, 𝑦2)  ∈  𝑇2  (Free disposability of all inputs);  

(𝑥2, 𝑦2) ∈  𝑇2 ∧ 𝑦2
′ ≤ 𝑦2 → (𝑥2, 𝑦2

′)  ∈  𝑇2  (Free disposability of all outputs, except 

manure);  

(𝑥2, 𝑦2, 𝑚) ∈ 𝑇2  ∧ 0 < 𝜃 < 1 → (𝑥2, 𝜃𝑦2, 𝜃𝑚) ∈ 𝑇2  (weak disposability of manure); 

(𝑥2, 𝑦2, 𝑚) ∈ 𝑇2  ∧ 𝑚 = 0 ⇒  𝑦2 = 0 (null-jointness of manure and livestock production).  

The combination of weakly disposable manure and null-jointness for manure is that excess 
manure disposal generates costs for the farmer as manure can only be upcycled and used as 
crop fertilizer up to a certain amount (Ronald W Shephard, 1977; Ronald William Shephard, 
2012).  

𝑇3 is defined as: 

 (𝑥𝑝, 𝑒)  ∈ 𝑇3  ∧  𝑥𝑝′ ≤  𝑥𝑝  →  (𝑥𝑝′, 𝑒)  ∈ 𝑇3  (costly disposability of pollution-generating 
inputs);  

(𝑥𝑝, 𝑒) ∈ 𝑇3  ∧ 𝑒′ ≥ 𝑒 → (𝑥𝑃, 𝑒′) ∈  𝑇3  (costly disposability of GHG emissions). 

6.2.3. Model formulation  

For each individual farm (DMU) k = 1,..., K, the DMU under evaluation is k = 𝑖. The directional 
output distance function is given by:  

𝐷𝑘(𝑥𝑘, 𝑦𝑘
𝐶 , 𝑧𝑘

𝐶 , 𝑦𝑘
𝐿 , 𝑒𝑘; 𝑔𝑘) = sup  { 𝛽 ≥ 0 ∶ (𝑥𝑘, 𝑦𝑘

𝐶 +  𝛽𝑔𝑦,𝑘
𝐶  , 𝑧𝑘

𝐶 +  𝛽𝑔𝑧,𝑘
𝐶 , 𝑦𝑘

𝐿 + 𝛽𝑔𝑦,𝑘
𝐿 , 𝑒𝑘 −

 𝛽𝑔𝑒,𝑘) ∈ 𝑇1  ∩  𝑇2 ∩ 𝑇3}                                                                                                            (3) 

𝛽  is the overall technical inefficiency score. 𝑔𝑘  is the directional vector that expands the 

intended outputs, 𝑦𝑘
𝐶 , 𝑧𝑘

𝐶  and 𝑦𝑘
𝐿 , and contracts GHG emissions,  𝑒𝑘 . An output-oriented 

model is chosen as this research aims to quantify the potential of the circularity principle and 
of land optimization in simultaneously producing intended products and reducing residual 

GHG, given the level of all inputs. We have selected 𝑔𝑦,𝑘
𝐶 = 𝑦𝑘

𝐶 , 𝑔𝑧,𝑘
𝐶 = 𝑧𝑘

𝐶 , 𝑔𝑦,𝑘
𝐿 = 𝑦𝑘

𝐿 , 𝑔𝑒,𝑘 =

𝑒𝑘 as the directional vectors, following for instance Ang and Kerstens (2016) and Chambers, 
Fāure, and Grosskopf (1996).  𝛽 indicates the maximum proportional expansion of desirable 
outputs and maximum proportional contraction of undesirable outputs. 𝑥𝑘 represents all the 
inputs in the directional distance function.  

Land use is a shared, yet non-joint input by both crop and livestock production. Farmers have 
to decide how much land to use for livestock production and crop production. In line with Ang 
and Kerstens (2016) and Cherchye, De Rock, and Hennebel (2017), one can simultaneously 
further expand production and reduce GHG emissions by reallocation. Let  𝑥𝑘 ∈  ℝ+

𝐶  with 
𝐶 ⊆ {1, … , 𝑁𝐶} ∩ {1, … , 𝑁𝐿}  be the process-specific inputs that have to be reallocated 

between the crop and livestock subprocesses, such that 𝑥𝑘
𝐶,𝑙 + 𝑥𝑘

𝐿,𝑙 =  𝑥𝑘
𝑙   ∀ 𝑙 ∈ 𝐶 . Here, 

𝐶 refers to land use, common to crop and livestock, that can be reallocated among both 
subprocesses. Land use is treated as a re-allocatable and fixed input in line with Färe et al. 
(1997). The total land use on the dairy farm equals the sum of crop land and livestock land.  

The DEA model that allows reallocation of land is given by equations (4), (4a) – (4z). 𝛽𝑖 is the 
re-allocative technical ineffiency score for each farm i under evaluation. This model also nests 
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the model with fixed land allocation, i.e. constraints (4a) – (4y) and removing the crop and 

livestock land ( 𝑋𝑖
𝐶,𝑙,  𝑋𝑖

𝐿,𝑙 ) from the optimization operand in (4). The detailed model 
formulation for non-reallocation can be found in appendix 6A. The resulting 𝛽  from that 
model is the non-re-allocative technical ineffiency score for each farm i under evaluation. 
Note that our model makes few implicit assumptions about land use following Ang and 
Kerstens (2016). We assume that land use is immediately re-allocatable, (i.e. costless and 
substitutable) between crops and livestock on the same dairy farm.  

max
𝛽𝑖,𝜆𝑘,𝛾𝑘,𝜇𝑘

𝑋𝑖
𝐶,𝑙≥ 0, 𝑋𝑖

𝐿,𝑙≥0

𝛽𝑖                                                                       (4) 

s.t.  

 ∑ 𝜆𝑘𝑥𝑘
𝐶  ≤  𝑥𝑖

𝐶𝐾
𝑘=1   (4a) 

 

 ∑ λk𝑚𝑘
𝐿,𝑢   ≤  mi

L,uK
k =1      (4b) 

 

 ∑ 𝜆𝑘
𝐾
𝑘=1 𝑥𝑘

𝐶,𝑙 − 𝑥𝑖
𝐶,𝑙 ≤ 0     (4c) 

 

 ∑ 𝜆𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (4d) 

 

 ∑ 𝜆𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1   (4e) 

   

 ∑ −𝜆𝑘𝑦𝑘
𝐶 + 𝛽𝑖𝑔𝑦,𝑘

𝐶 ≤  − 𝑦𝑖
𝐶  𝐾

𝑘=1   (4f) 

 

 ∑ −𝜆𝑘𝑧𝑘
𝐶 + 𝛽𝑖𝑔𝑧,𝑘

𝐶 ≤  − 𝑧𝑖
𝐶   𝐾

𝑘=1   (4g) 

   

 ∑ 𝜆𝑘
𝐾
𝐾=1 = 1    (4h) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑓ℎ
 ≤  𝑥𝑖

𝐿,𝑓ℎ
  (4i) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑎  ≤  𝑥𝑖
𝐿,𝑎

  (4j) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑙 − 𝑥𝑖
𝐿,𝑙  ≤  0   (41) 

   

 ∑ 𝛾𝑘𝑧𝑘
𝐶  ≤   𝑧𝑖

𝐶𝐾
𝑘=1   (2l) 

   

 ∑ 𝛾𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (4m) 
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 ∑ 𝛾𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1   (4n) 

 

 ∑ − 𝛾𝑘𝑦𝑘
𝐿 +  𝛽𝑖𝑔𝑦,𝑘

𝐿 ≤  −𝑦𝑖
𝐿𝐾

𝑘=1     

 

(4o) 

 ∑ 𝛾𝑘
𝐾
𝐾=1 = 1   

 

(3) 

 ∑ 𝛾𝑘(𝑚𝑘
𝐿,𝑢 +  𝑚𝑘

𝐿,𝑝) =  𝑚𝑖
𝐿,𝑢 +  𝑚𝑖

𝐿,𝑝 𝐾
𝑘=1   

 

(4q) 

 ∑ − 𝜇𝑘𝑥𝑘
𝐶,𝑝 ≤ −𝐾

𝑘=1 𝑥𝑖
𝐶,𝑝   

 

(4r) 

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑎 ≤ − 𝑥𝑖

𝐿,𝑃𝑎 𝐾
𝑘=1   (4) 

 

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓

≤ − 𝑥𝑖
𝐿,𝑃𝑓

 𝐾
𝑘=1   (4t) 

   

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓𝑐

≤ − 𝑥𝑖
𝐿,𝑃𝑓𝑐

 𝐾
𝑘=1   (4u) 

   

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑒 ≤ − 𝑞𝑖

𝐽,𝑝𝑒 𝐾
𝑘=1   

 

(4v) 

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑚 ≤ − 𝑞𝑖

𝐽,𝑝𝑚 𝐾
𝑘=1   (4w) 

   

 ∑ 𝜇𝑘𝑒𝑘 +  𝛽𝑖𝑔𝑒,𝑘 ≤  𝑒𝑖   
𝐾
𝑘=1   (4x) 

   

 ∑ 𝜇𝑘
𝐾
𝐾=1 = 1    

 

(5) 

 𝑥𝑖
𝐶,𝑙   +  𝑥𝑖

𝐿,𝑙 =  𝑥𝑖 
𝑙     (4z) 

   

The coordination efficiency (𝐶𝐼) is measured by 

𝐶𝐼 =  𝑅𝑇𝐼𝐸 − 𝑁𝑅𝑇𝐼𝐸                                                                                                (5) 

where 𝑅𝑇𝐼𝐸  and 𝑁𝑅𝑇𝐼𝐸  denote re-allocative technical inefficiency and non-re-allocative 
technical inefficiency, respectively. 𝐶𝐼 is non-negative, as non-reallocation is always possible 
when reallocation is allowed. Any positive value for the 𝐶𝐼 indicates a possibility to further 
increase intended outputs and reduce GHG emissions.  
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6.3. Data 

Our empirical application focuses on a sample of Dutch dairy farms over the period of 2010 
to 2019. We obtained data from the Dutch Farm Accountancy Data Network (FADN) 
supplemented with GHG emissions data on dairy farm from Wageningen Economic Research 
(WEcR). The FADN is a European instrument that evaluates farm income and the impacts of 
the Common Agricultural Policy (van der Meer, 2019). Farmers participate in the FADN 
voluntarily. In the FADN, dairy farms are defined as those whose revenues from sales of milk, 
milk products, turnover and growth of cattle represent at least two thirds of their total 
revenue. The sample is unbalanced as farms stay in the sample for a period of 4–7 years, and 
it is statistically representative for the Dutch dairy sector. On average, there are 190 farms for 
each year. In this study, mixed dairy farms are not included because data on GHG emissions 
is not available.  

We distinguish technology-specific inputs and outputs. For the crop production technology, 
we aggregate crop-specific costs (seeds, crop protection products and fertilizers), upcycled 
manure, crop land use (feed crops and cash crops), aggregated crop yields that are sold to the 
market, and the crop residuals used for animal feed. For the livestock-specific technology, we 
have livestock units, aggregated livestock specific costs (animal health costs and purchased 
animal feed, tap water cost), feed from own crop residuals, livestock land use (grassland), 
aggregated livestock production, and total manure from farm. There are joint shared inputs 
for the crop-production technology and the livestock-production technology: aggregated 
joint inputs set 1 includes energy, value of building, machinery and equipment; and joint 
inputs set 2 includes labor and water use irrigation. For the greenhouse technology, we have 
included only the pollution-generating inputs and the total on-farm GHG emissions. We 
aggregate the monetary inputs and outputs as implicit quantities by computing the ratio of 
their aggregated value to their corresponding aggregated Törnqvist price index. Price indices 
vary over years but not over farms. This implies that the differences in the quality of inputs 
and outputs are reflected by implicit quantities (Cox and Wohlgenant, 1986). The separate 
price indices are obtained mostly from EUROSTAT (2022) and the tap water price index from 
the Dutch Centraal Bureau voor de Statistiek (2022). The final dataset contains 1,896 
observations for the period of 2010 to 2019. The descriptive statistics of the variables are 
summarized in Table 16. 

 

Table 16 Descriptive statistics of model variables 

Variables Dimensions Average Std dev.  

Crop-specific variable inputs  𝒙𝒌
𝑪 ; 𝒙𝒌

𝑪,𝒑
 Euros  15,147.36 14,449.90 

Upcycled manure  𝒎𝒌
𝑳,𝒖

 Ton 3,598.76 2,494.82 

Joint inputs set 1 𝒒𝒌
𝑱𝟏

 Euros  598,716.17 443,149.08 

Joint inputs set 2 𝒒𝒌
𝑱𝟐:     

Labor Full hours 5,177.16 3,120.61 

Water use irrigation M3 3,923.24 13,562.46 

Total crop outputs as sold 𝒚𝒌
𝑪  Euros  6,570.74 33,309.97 

Unsold crop for animal feed (maize & grass) 𝒛𝒌
𝑪 ; 𝒙𝒌

𝑳,𝑷𝒇𝒄
 kVEM 728,645.37 476,513.96 
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Livestock units 𝒙𝒌
𝑳,𝒂 ; 𝒙𝒌

𝑳,𝑷𝒂
 Cow equivalent 171.42 105.28 

Livestock-specific variable inputs 𝒙𝒌
𝑳,𝒇𝒉

 Euros  136,331.53 98,160.10 

Total livestock production 𝒚𝒌
𝑳   Euros  434,236.05 308,233.90 

Animal feed expenditure  𝒙𝒌
𝑳,𝑷𝒇

 Euros 129,869.95 95,765.49 

Energy expenditure 𝒒𝒌
𝑱,𝒑𝒆

 Euros 16,469.35 12,638.89 

Total manure (𝒎𝒌
𝑳,𝒖 +  𝒎𝒌

𝑳,𝒑
) ; 𝒒𝒌

𝑱,𝒑𝒎
 Ton 4,333.93 2,937.53 

Total crop land 𝒙𝒌
𝑪,𝒍

 Hectares 12.40 14.19 

Total livestock land 𝒙𝒌
𝑳,𝒍 Hectares 54.39 33.46 

Total GHG emissions 𝒆𝒌 Ton  1,818.44 1,238.42 

Note: kVEM is the energy content of the dry matter.   

 

6.4. Results  

In this section, we first present the overall technical inefficiency scores, followed by land 
optimization results. Scenario results and robustness check are discussed as well.  

 

In this section, we first present the overall technical inefficiency scores, followed by land 
optimization results. Scenario results and robustness check are discussed as well.  

6.4.1. Overall technical inefficiency scores  

Table 17 depicts the yearly average results of the coordination inefficiency CI, technical 
inefficiency when land is optimally chosen (𝑅𝑇𝐼𝐸), and the technical inefficiency when land 
reallocation is not allowed between crops and livestock use (𝑁𝑅𝑇𝐼𝐸). For the period 2010 to 
2019, the yearly average technical inefficiency ranges from 3.0% to 7.2% when land is 
optimally chosen. This means on average farms could simultaneously expand production and 
reduce GHG emissions by 3.0% in 2010 and by 7.2% in 2016, ceteris paribus. When land is not 
allowed to be optimized, the yearly average technical inefficiency ranges from 2.3% to 6.6% 
for the period 2010 to 2019. This means that on average farms could gain economic and 
environmental efficiency by 2.3% in 2010 and by 6.6% in 2016. The difference between 𝑅𝑇𝐼𝐸 
and 𝑁𝑅𝑇𝐼𝐸, which is the coordination inefficiency CI, is on average small and ranges from 
0.3% to 0.8% between 2010 and 2019.  

 

Table 17.  Average coordination inefficiency (CI) scores and average technical inefficiency scores 

with and without land reallocation for the full model with directional vector (𝒈𝒚,𝒌
𝑪 , 𝒈𝒛,𝒌

𝑪 , 𝒈𝒚,𝒌
𝑳 , 𝒈𝒆,𝒌) 

per year. 

Inefficiency 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

𝑪𝑰 0.007 0.003 0.005 0.008 0.008 0.008 0.006 0.006 0.007 0.004 

𝑵𝑹𝑻𝑰𝑬  0.023 0.034 0.039 0.041 0.044 0.050 0.066 0.058 0.048 0.046 

𝑹𝑻𝑰𝑬   0.030 0.037 0.044 0.049 0.052 0.058 0.072 0.064 0.055 0.050 
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6.4.2. Land optimization  

We compare actual and optimal land allocation in Figure 12. Except for the year 2010, the 
results suggest that more land should be allocated to crop production to reduce GHG 
emissions and increase production simultaneously. Our results suggest that by reallocating 
on average 4.5 hectares from livestock use to crop production on a Dutch dairy farm (total 
size of 66.8 hectares on average), farms can simultaneously increase production and reduce 
GHG emissions by 5.1%, with only 0.6% due to land optimization. To be specific, 0.6% 
efficiency gain will be achieved if crop land use takes up 25.3% of the total farm size instead 
of 18.6% as of the current situation. 4.5% efficiency gains can be achieved if farms try to catch 
up with their best performing peers.  

 

Figure 12. Distribution of optimal and actual proportion of land allocated for crop production per 
year 

 

6.4.3. Alternative pathways to reduce GHG emissions  

Besides the maximum proportional expansion of desirable outputs and contraction of 
undesirable outputs (which we denote as pathway 1), we also explored three other 
orientations under different directional distance vectors. The purpose is to explore the 
potential for further reduction of GHG emissions on dairy farms versus the potential for 
increased production. Table 18 illustrates the results for these four pathways. Pathway 1 
shows the simultaneous results for increasing production and reducing GHG emissions, 
pathway 2 shows the results when only reducing GHG emissions, pathway 3 shows the results 
when expanding crop and livestock production, and pathway 4 shows the results when only 
expanding livestock production.  

Under pathway 1 with the directional vector of (𝑔𝑦,𝑘
𝐶 = 𝑦𝑘

𝐶 , 𝑔𝑧,𝑘
𝐶 = 𝑧𝑘

𝐶 , 𝑔𝑦,𝑘
𝐿 = 𝑦𝑘

𝐿 , 𝑔𝑒,𝑘 = 𝑒𝑘), 

the average technical inefficiency without and with land reallocation is 4.5% and 5.1%, 
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respectively. These results show that by optimizing land allocation, dairy farms can expand 
production and reduce GHG emissions by 5.1% on average while keeping everything else 
constant. The coordination efficiency gain is on average 0.6%. The efficiency gain under 
pathway 1 with or without land optimization is the lowest among all pathways. This implies 
that most specialized Dutch dairy farms are already quite efficient when it comes to 
proportional production expansion and GHG emissions contraction. The maximum GHG 
reduction potential does not come from this pathway.  

Under pathway 2 with the directional vector of (𝑔𝑦,𝑘
𝐶 = 0, 𝑔𝑧,𝑘

𝐶 = 0, 𝑔𝑦,𝑘
𝐿 = 0, 𝑔𝑒,𝑘 = 𝑒𝑘), the 

average technical inefficiency with/without land reallocation is 11.8%, and the coordination 
efficiency gain is on average 0.001%. These results point out that GHG emissions can be 
reduced by 11.79% on average among the sample dairy farms, while keeping conventional 
production and all inputs constant without land reallocation. With land reallocation, the 
efficiency gain is only 0.001% which is very small. Land optimization does not contribute to 
reducing GHG emissions when inputs and conventional outputs are held constant. 
Nevertheless, the highest GHG reduction potential can be reached via this pathway among all 
pathways.  

Under pathway 3 with the directional vector of (𝑔𝑦,𝑘
𝐶 = 𝑦𝑘

𝐶 , 𝑔𝑧,𝑘
𝐶 = 𝑧𝑘

𝐶 , 𝑔𝑦,𝑘
𝐿 = 𝑦𝑘

𝐿 , 𝑔𝑒,𝑘 = 0), 

the average technical inefficiency without land reallocation is 5.9%, and the coordination 
efficiency gain is on average 2.2%. Among all pathways, pathway 3 offers the highest potential 
to enhance both crop and livestock production, when emissions and inputs are held constant. 
If GHG emission and all inputs are held constant, an additional coordination efficiency gain of 
2.2% can be obtained on average by optimizing land allocation across outputs. This is the 
highest coordination efficiency gain among all cases.  

Under pathway 4 with the directional vector of (𝑔𝑦,𝑘
𝐶 = 0, 𝑔𝑧,𝑘

𝐶 = 0, 𝑔𝑦,𝑘
𝐿 = 𝑦𝑘

𝐿 , 𝑔𝑒,𝑘 = 0), the 

average technical inefficiency without land reallocation is 8.6%, and the coordination 
efficiency gain is on average 0.8% for each farm. These results show that livestock production 
can be increased by 8.6% on average among sample dairy farms, while crop outputs & GHG 
emissions, and all inputs are held constant without land allocation. If land optimization is 
allowed, there is an 0.8% additional efficiency gain for livestock outputs per farm on average. 
However, this efficiency gain is lower than for pathway 3, which indicates land reallocation 
does not contribute much to improve the efficiency in this case.  

Given the importance of tackling climate change, it is more realistic to consider the 
implications of the results from the first two pathways. Overall, land optimization does not 
bring substantial efficiency gains as can be observed from the small value of CI. Interestingly, 
GHG emissions can be reduced with 11.8% on average with or without land reallocation if all 
inputs and conventional outputs are held constant. This reduction potential of GHGs 
decreases to 4.5% if producers are allowed to expand crop and livestock outputs at the same 
time, holding inputs and land use constant.  
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Table 18 Average technical inefficiency scores and the coordination inefficiency (CI) scores for 
models with different directional vectors. 

Variables Pathway 1 Pathway 2 Pathway 3 Pathway 4 

Average inefficiency scores (𝒚𝒌
𝑪, 𝒛𝒌

𝑪, 𝒚𝒌
𝑳 , 𝒆𝒌) ( 𝟎, 𝟎, 𝟎, 𝒆𝒌) (𝒚𝒌

𝑪, 𝒛𝒌
𝑪, 𝒚𝒌

𝑳 , 𝟎) (𝟎, 𝟎, 𝒚𝒌
𝑳 , 𝟎) 

𝑪𝑰 0.006 0.000 0.022 0.008 

𝑵𝑹𝑻𝑰𝑬  0.045 0.118 0.059 0.086 

𝑹𝑻𝑰𝑬   0.051 0.118 0.081 0.094 

 

6.4.4. Robustness check  

Our DEA model used one output-specific inefficiency score for both conventional production 
and residual GHGs. This provides us results for simultaneous expansion and contraction in the 
direction of corresponding directional vectors. We investigated the robustness of the results 
by modeling the conventional technology and residual technology using two different output-
specific inefficiency scores, i.e. a technical inefficiency score β for crop- and livestock-
production technologies, and a technical ineffciency score α for the residual GHG emission 
technology. The detailed model formulation is added in appendix 6B.  

Table 19 shows the separate inefficiency scores for conventional technology and residual GHG 
emission technology per year, with and without land reallocation. The last column of Table 
19 shows the average score over the entire period. It is very similar to the results listed in 
Table 18.   
 
Table 19 Desirable output and GHG emission specific technical inefficiency with and without land 
reallocation per year and the mean over the entire period. 

Inefficiency 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 mean 

𝑵𝑹𝑻𝑰𝑬            

Desirable 
outputs 𝜷𝒊 

0.041 0.051 0.053 0.057 0.065 0.076 0.107 0.082 0.072 0.083 0.069 

GHG 
emissions 𝜶𝒊 

0.085 0.098 0.120 0.130 0.098 0.117 0.124 0.127 0.122 0.116 0.114 

𝑹𝑻𝑰𝑬            

Desirable 
outputs 𝜷𝒊 

0.062 0.060 0.066 0.070 0.075 0.088 0.126 0.096 0.082 0.090 0.082 

GHG 
emissions 𝜶𝒊 

0.085 0.098 0.120 0.130 0.140 0.117 0.124 0.127 0.122 0.116 0.118 

 

The land optimization results from the model in appendix 6A are plotted in Figure 10. In 
general, the distribution under separate efficiency scores follows the distribution under the 
identical inefficiency score, with slightly lower values. In 2014 and from 2016 to 2019, more 
land should have been allocated to crop production than the actual land allocation. For the 
years 2011 to 2013, land re-allocation would not have brought any efficiency gains. For the 
year 2010 and 2015, the data suggests that more land should have been allocated to livestock 
land use to increase efficiency. Overall, a smaller proportion of land needs to be allocated to 
crop production with separate inefficiency scores (on average 2.86 hectares) than considering 
the optimal allocation with identical inefficiency scores (on average 4.5 hectares).  



 

REPORT 3.4 

 

 

This project has received funding from the European Union’s Horizon 2020  
research and innovation programme under grant agreement N° 817566. 

100 

 

 

Figure 13. Distribution of optimal (under separate inefficiency scores and identical inefficiency 
scores) and actual land allocation for crop and livestock production per year 

 

6.5. Discussion 

This study used a network DEA model with the by-production approach to quantify the 
technical & environmental inefficiency of dairy farms, taking GHG emissions into account. The 
model also enables quantification of the efficiency gains from land reallocation between crop 
and livestock use. The current study found that the technical inefficiency is on average 4.5% 
at the farm level. Land reallocation to crop production could bring a small additional efficiency 
gain of 0.6% on average.   

This finding is consistent with the results of Ang and Kerstens (2016), who conclude that 
coordination inefficient farms should in general allocate more land to crop production. 
However, the coordination inefficiency score obtained in this study is lower than that 
estimated by Ang and Kerstens (2016), which means land optimization on specialized Dutch 
dairy farms provides only minimal efficency gains. This difference could be explained by the 
fact that this study focuses exclusively on specialized dairy farms, whereas Ang and Kerstens 
(2016) also included mixed farms and specialized crop farms. 

Only a few other studies have looked into environmental efficiency gains on dairy farms. For 
French suckler cow farms, K. H. Dakpo and Oude Lansink (2019) found an average technical 
inefficiency (TIE) for desirable output of 0.2%, while the average TIE for GHG emission was 
28.4%; i.e. much lower and higher than for our study. This suggests that specialized Dutch 
dairy farms are more efficient in mitigating GHG emissions than French suckler cow farms. 
For nitrogen use, previous studies found much higher TIE values for Dutch dairy farms. 
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Reinhard, Lovell, and Thijssen (1999) found a mean TIE of 55.9% for nitrogen whereas 
Lamkowsky, Oenema, Meuwissen, and Ang (2021) found a 50% productivity gap for nitrogen.   

Our findings on the efficiency gains from land reallocation cannot be directly generalized to 
other livestock or crop farming types or to mixed farms. Hence, additional research will be 
needed in order to gain a better picture of the potential contribution of land optimization to 
a reduction of GHG emissions and an increase in production. Our study calls investigations 
that include GHG emission data for mixed farms in the Netherlands. 

In terms of GHG reduction potential from dairy farms operating circular dairy principles, GHG 
emissions per farm could be reduced by 11.8% on average if the farm production is kept 
constant with current input and land use. However, the GHG emissions per farm could be 
reduced by only 4.5% on average if crop and livestock production would be expanded by 4.5% 
with constant input and land use. This implies that there is a trade-off between reducing GHG 
emissions while keeping production constant and reducing GHG emissions while at the same 
time expanding production. This trade-off between environmental and economic objectives 
has also been found for the dairy sector of other countries (Kirilova et al., 2022; Le, Jeffrey, 
and An, 2020).  

Beyond the scope of circular dairy, circular farming principles advocate for plant-based 
products to be consumed by humans before feeding it to livestock animals. This calls for a 
dietary shift of consumers towards more plant-based products and non-ruminants meats, and 
less dairy beef and other dairy products. Such dietary changes could reduce the food-related 
GHG emission of dairy farming as well (Kesse-Guyot et al., 2021) through mechanisms like a 
Pigouvian meat tax (which is set to the social cost of externality effects) or green-label 
education for consumers (Katare, Lawing, Park, and Wetzstein, 2020).  

6.6. Conclusions 

This study modelled the intended production and residual GHG emissions on Dutch dairy 
farms with circular principles, by combining a network DEA model with the by-production 
approach. The results from the directional output distance function indicate that mean 
inefficiency levels for Dutch dairy farms are quite small, i.e. 4.5% on average. This shows that 
many Dutch dairy farms are already operating quite close to the frontier. Thus, there is only 
limited potential for GHG emission reduction through efficiency improvement. 

Although specialized dairy farms in the Netherlands should allocate more land to crop 
production according to the reallocation model, the potential efficiency gain would on 
average only be 0.6%. Hence, there is limited potential for reducing GHG emissions and 
increasing production by optimizing land use.  While we need to remain cautious with our 
interpretation as our sample did not include mixed farms, the results suggest that 
incentivizing specialized Dutch dairy farms to become more mixed is an ineffective policy 
instrument to mitigate GHG emissions. 

Our modeling results suggest that the largest reduction potential for GHG emissions (11.8%) 
can be obtained when doing so while keeping the production of crop and livestock products, 
and all inputs use constant. The reduction potential for GHG emissions may be even higher if 
production (or herd size) is to be sacrificed as shown by Le et al. (2020). However, this will 
come at a higher private cost for farmers if they are required by regulations to reduce the on-
farm GHG emissions. In that case, policy instruments that pertain cost-sharing between the 
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government and dairy producers may be needed as suggested by Le et al. (2020) and Lötjönen, 
Temmes, and Ollikainen (2020).  

This article is a first step to structurally incorporate circularity principles in efficiency analyses. 
We have several recommendations for future research. In the current study, there are no 
interactions between individual farms, nor are waste streams from non-farm entities 
considered, such as urban and industry waste. Future research should consider the potential 
of circularity in decoupling GHG emissions from farm production at a local and/or regional 
level. Moreover, the behavioral and managerial determinants of high economic performance 
and low levels of GHG emissions will need to be investigated. Finally, additional data on GHG 
emissions from mixed farms should be collected to validate the findings obtained here. 
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APPENDIX 2A: SAEM ALGORITHM STRUCTURE 
The aim of our estimation procedure is to compute the ML estimator of 0θ  or, at least, an 

estimator that is asymptotically equivalent to this estimator which is practically “infeasible”. 
The ML estimator of 0θ   is the solution in θ   to the ML problem max ( )NLθ θ   where 

( )11 1
( ) ln ( ) ( , | , ; , ) ( ; )

N N T

N i it it itti i
L f r dj+

== =
= = -å å Õòθ θ w z γ δ Ψ γ μ Ω γl  . EM algorithms were 

proposed by (Dempster et al, 1977) for maximizing the likelihood function of models involving 
missing information, of which random parameter models are typical examples. Extensions of 
the original EM algorithm were then proposed for overcoming limitations of this algorithm 
(e.g., McLachlan and Krishnan, 2007; Lavielle, 2014), including issues such as those raised by 
the integration of the likelihood function of our model. 

EM type algorithms are constructed based on the expectation conditional on the “observed 
data” of the “complete data” sample log-likelihood function of the considered model. 
Contribution of farmer i to the likelihood function of the model corresponds to the pdf of 
her/his sequence of production choices conditional on the sequence of exogenous variables 

characterizing this choice sequence. This choice sequence is given by ( , )i i
+w r   with 

( : 1,..., )i it t T+ += =w w   and ( : 1,..., )i itr t T= =r   and the corresponding conditioning set by 

( : 1,..., )i it t Tº =z z  . The complete – observed and unobserved modelled variables – data 

related to farmer i consist of her/his observed production choice sequence, ( , )i i
+w r  , and 

her/his specific parameter vector, iγ . The complete data log-likelihood function of our model 

is thus given by: 

(2A.1) 
1 1 1 1
ln ( , ) ln ( , | , ; , ) ln ( ; , )

N N T NC
i i it it it i ii i t i

f r j+

= = = =
= +å å å åθ γ w z γ δ Ψ γ μ Ωl . 

The “observed data” related to farmer i, thereafter denoted by iκ   , consist of her/his 

observed production choice sequence, ( , )i i
+w r , and of the exogenous variables conditioning 

these choice sequence, iz . That is to say, ( , , )i i i i
+=κ w r z . According to our notations function 

0( | ; )i if γ κ θ  denotes the density of iγ  conditional on iκ . Let function 

(2A.2) 
( )

[ln ( , )| ] ln ( , ) ( | ; )C C
i i i i i iE f d= òθ
θ γ κ θ γ γ κ θ γl l  

denote the expectation of the ln ( , )C
i iθ γl   conditional on iκ   based on the pdf ( | ; )i if γ κ θ  

where θ  is a candidate estimate of 0θ . Function 

(2A.3) 
( )1

( | ) [ln ( , )| ]
N C

i i ii
Q E

=
= å θ

θ θ θ γ κl  

defines the expectation of the complete data sample log-likelihood function 
1
ln ( , )

N C
i ii=å θ γl  

conditional on ( : 1,..., )i i N=κ   based on the pdfs ( | ; )i if γ κ θ   for 1,...,i N=  . This function, 

which can be interpreted as a well-behaved proxy of ( )NL θ  when θ  is suitably chosen, is the 

“engine” of EM type algorithms that can be used for estimating 0θ . 

SAEM algorithms iterate three steps until numerical convergence: a Simulation (S) step, an 
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Approximation (A) step and a Maximization (M) step. They generate sequences of estimates 

of 0θ  that converge to maxima of ( )NL θ  under mild assumptions, thereby allowing to compute 

ML estimators of 0θ  (Delyon et al, 1999; Kuhn et Lavielle, 2005; Lavielle, 2014). Assuming that 

the estimate of 0θ  obtained at the end of iteration n is given by ( )nθ , our SAEM algorithm 

proceeds as follows at iteration 1n+ . 

The S step consists of integrating terms ( ) ( )[ln ( , )| ] ln ( , ) ( | ; )C C
n i i i i i i nE f d= òθ γ κ θ γ γ κ θ γl l   with 

simulation methods for 1,...i N=  . Building on the work of Caffo et al (2005), we use an 

Importance Sampling approach. Terms ( )[ln ( , )| ]C
n i i iE θ γ κl  are approximated with simulated 

weighted sums 
( )

,( ) ,( )1
ln ( , )

nJ j C j
i n i i nj

w
=å θ γ%% l  where terms ,( )

j
i nγ%  are independent random draws 

from ( ) ( )( , )n nμ ΩN  while terms 

(2A.4) 
( )

,( ) ( ) ( )1
,( )

,( ) ( ) ( )11

ˆ ˆ( , | , ; , )

ˆ ˆ( , | , ; , )
n

T j
it it it i n n nj t

i n J T j
it it it i n n ntj

f r

f r
w

+

=

+

==

=
Õ

å Õ

w z γ δ Ψ

w z γ δ Ψ

%
%

%
 

are their corresponding normalized importance weights, for ( )1,..., nj J= . Other proposed 

densities are more efficient than that of ( ) ( )( , )n nμ ΩN  but are more difficult to draw from. 

The A step consists of constructing function ( )( )nQ θ% , the stochastic approximation of ( )( | )nQ θ θ

, by using the following recursive formula: 

(2A.5) 
( )

( ) ( ) ( 1) ( ) ,( ) ,( )1 1
( ) (1 ) ( ) ln ( , )

nN J j C j
n n n n i n i i ni j

Q Ql l w- = =
= - + å åθ θ θ γ% % %% l . 

Delyon et al (1999) and Kuhn and Lavielle (2005) provide guidelines for suitably choosing the 

sequence of weight terms ( )nl , which must lie in (0,1] . Large values of ( )nl  allow to explore 

the parameter space and yield a quick convergence to the neighborhood of a solution to the 

ML problem. But they also imply large simulation noise. Reducing the value of ( )nl  reduces 

the simulation noise and allow the algorithm to converge in the neighborhood of a solution 
to the ML problem. 

Kuhn and Lavielle (2005) also provide guidelines for suitably choosing the number of draws 

( )nJ  . Importantly, large numbers of random draws are not needed at each iteration since 

function ( )( )nQ θ% , by construction, reuses the random draws obtained in previous iterations. 

Indeed, “recycling” previous iteration draws is a major advantage of SAEM algorithms over 
their competing alternatives such as MCEM algorithms (Delyon et al, 1999; Lavielle, 2014). As 
a matter of fact, the SAEM algorithm presented here performs significantly better that its 

MCEM counterpart, which corresponds to the SAEM algorithm with ( ) 1nl = , in our empirical 

application.  

The M step consists of updating the estimate of 0θ   by computing ( 1)n+θ  . This updated 

estimate is defined either as: 

(2A.6) ( 1) ( )argmax ( )n nQ+ = θθ θ%   
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or as any ( 1)n+θ  such that condition ( ) ( 1) ( ) ( )( ) ( )n n n nQ Q+ ³θ θ% %  holds. 

 

The main advantage of SAEM algorithms, and of other EM type algorithms, for maximizing the 
log-likelihood function of random parameters models is due to the following decomposition 

of ( )( )nQ θ% : 

(2A.7) ( ) ( ) ( )( ) ( , ) ( , )n n nQ W M= +θ δ Ψ μ Ω% % %  

where: 

(2A.8)       
( )

( ) ( ) ( 1) ( ) ,( ) ,( )1 1 1
( , ) (1 ) ( , ) ln ( , | , ; , )

nN J Tj j
n n n n i n it it it i ni j t

W W f rl l w +

- = = =
= - + å å åδ Ψ δ Ψ w z γ δ Ψ% % %%  

and: 

(2A.9) 
( )

( ) ( ) ( 1) ( ) ,( ) ,( )1
( , ) (1 ) ( , ) ln ( ; )

nN J j j
n n n n i n i ni j

M Ml l w j- =
= - + -å åμ Ω μ Ω γ μ Ω% % %% . 

This decomposition enables us to separately update parameters ( , )μ Ω  and ( , )δ Ψ . Moreover, 

term ( 1) ( 1) ( )( , ) argmax ( , )n n nM+ + = θμ Ω μ Ω%  can be obtained in analytical closed form based on 

the “sufficient statistic approach” proposed by Delyon et al (1999). 

Maximizing ( )( , )nW δ Ψ%  in ( , )δ Ψ  appears to be much more difficult due to the functional form 

of ( , | , ; )it it it if r+w z γ η . Yet, function ( )( , )nW δ Ψ%  can be rewritten as: 

(2A.10) ( ) ( ) ( )( , ) ( , ) ( , )yxs r
n n nW W W= +δ Ψ δ Ψ δ Ψ% % %  

where: 

(2A.11) 
( 1)

( ) ( ) ( 1) ( ) ,( ) ,( )1 1 1
( , ) (1 ) ( , ) ln ( | , ; , )

nN J Tyxs yxs j j
n n n n i n it it i ni j t

W W fl l w
+ +

- = = =
= - + å å åδ Ψ δ Ψ w z γ δ Ψ% % %%  

and: 

(2A.12)      
( 1)

( ) ( ) ( 1) ( ) ,( ) ,( )1 1 1
( , ) (1 ) ( , ) ( | , , ; , )

nN J Tr r j j
n n n n i n it it i n iti j t

W W P rl l w
+ +

- = = =
= - + å å åδ Ψ δ Ψ z γ s δ Ψ% % %% . 

Terms ln ( | , ; , )it it if +w z γ δ Ψ  are defined – up to an additive term that doesn’t depend on ( , )δ Ψ  

– as log-likelihood functions at ( , )δ Ψ  of a Gaussian Seemingly Unrelated (linear) Regression 

(SUR) system with dependent variables missing at random (conditionally on ( , )it iz γ ). Ruud 

(1991) discussed the use of EM algorithms for computing ML estimators of models with latent 
Gaussian SUR systems. Based on Ruud’s insights, we devised a simple EM type procedure 

aimed at obtaining values of ( , )δ Ψ  ensuring that condition ( ) ( ) ( ) ( )( , ) ( , )yxs yxs
n n n nW W³δ Ψ δ Ψ% %  holds. 

This procedure defines ( 1) ( 1)( , )n n+ +δ Ψ , which, together with ( 1) ( 1)( , )n n+ +μ Ω , completes ( 1)n+θ . 

We don’t consider function ( )( , )r
nW δ Ψ%  when updating the estimate of 0 0( , )δ Ψ  because this 

function is an awkward function of ( , )δ Ψ . It involves the regime choice probability functions 

( | , , ; , )it it i itP r +z γ s δ Ψ . Yet, our ignoring ( )( , )r
nW δ Ψ%  in the construction of ( 1) ( 1)( , )n n+ +δ Ψ  doesn’t 

ensure that condition ( ) ( 1) ( ) ( )( ) ( )n n n nQ Q+ ³θ θ% %  holds whereas it is necessary for the convergence 
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of the SAEM algorithm. We devised a simple heuristic for coping with cases where ( 1)n+θ  

doesn’t succeed in increasing ( )( )nQ θ%   from ( ) ( )( )n nQ θ%  . Yet, this heuristic was rarely activated 

when running this SAEM algorithm for estimating the ESR-MEMC model considered in our 
application. Two explanations can be put forward. If regime choice probability functions 

( | , , ; , )it it i itP r +z γ s δ Ψ  don’t have any “active” role when computing ( 1) ( 1)( , )n n+ +δ Ψ  , they have 

important “passive” roles though their effects as elements of IS weights ,( )
j
i nw% . Also, the 

recursive structure of the considered ERS-MEMC model implies that most statistical 
information needed to estimate 0 0( , )δ Ψ  is contained in farmers’ crop level choices that are 

considered in ( ) ( , )yxs
nW δ Ψ% . Parameter 0 0( , )δ Ψ  only impacts regime choices through its effects 

on the expected crop profitability levels. 
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APPENDIX 3A: APPROACHES USED TO ESTIMATE THE 
INPUT COSTS ALLOCATION MODEL 

In this Appendix, for estimation purposes, we rewrite the model in the following compact 
form: 

(3A.1) ¢= +s xit it it itx u  

(3A.2) = ( )x h μit it    

(3A.3) = + +( )μ β Z δ εit i i it  and  = + +β ω Z π ηi i i   

where   s 2
0(0, ): Nit iidu ,  0( , )η 0 ψ: Ni iid  and 0( , )ε 0 Ω: Nit iid , and ^ ^ ^η ε sit i it itu . 

The considered model is full parametric, and the parameters to be estimated are:

s= 2( , , , , , )θ ω π δ ψ Ω . Under some regularity conditions and using identity specification for 

the transformation h, it is possible to obtain consistent estimates of θ  using a Generalized 
Least Square (GLS) approach applied to data that contain more observations (i.e. more time 
periods) for each farmer than the number of crops to which her/his variable inputs are to be 
allocated. Yet, this condition ( ³T C ) may not be verified in empirical applications using farmer 

panel data. Other problems, such that the multi-collinearity of s it  due to acreage choices 

complementarity and the heteroscedastic form of the error term of the model may make 
tedious the identification of the model parameters with standard approaches. As explained 
below, our estimation approach allows tackling these issues. We propose here to use 
Maximum Likelihood estimation approach via an extension of EM algorithm. 

Intermediary results 

Here, we define some intermediate results that we will need in the estimation section. Let 

define, as in previous section, m= Î Î( ) , ( )( : , )μ H Ci c it it c  such that: 

(3A.4) = Ä + +
( )( ) ( ) 0 ( )μ ι β Z δ ε
ii T i i i . 

( )μ i  follow normal distributions: 

(3A.5) Ä + +
( )( ) ( )( ( ) , )μ ι ω Z π Z δ G: N
ii iid T i i i   with ¢= Ä + Ä

( ) ( ) ( )
G ι ι ψ I Ω

i i ii T T T . 

The conditional distribution of 0| ;β μ θ  is given by: 

 (3A.6) 0 0 0| ; ( ( ; ), ( ))β ββ μ θ m μ θ V θ: Niid  

 with   
( )( )1 1

, , 1

1 1 1
, ( )

( ; ) ( ) ( ) ( )

( ) ( )

iT

i i it it it

i iT

- -

=

- - -

ìï = - + +ïï
í
ïï = +ïî

åβ β

β

m μ θ V θ Ω μ Z δ ψ ω Z π

V θ ψ Ω
. 

The distribution of  ( ) ( ) 0| , ;μ x s θi i  has not a standard form since ( )x i  is not linear in μ . Using 

Bayes’ formula, we have: 
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(3A.7) msµ 2
( ) ( ) ( ) ( )( | , ; ) ( | , ; ) ( ; )μ x s θ x μ s μ θi i i if f f  with m = ( , , , , )θ ω π δ Ω ψ , 

where f defines the density probability function.  

 

Maximum Likelihood estimation via TVF-SAEM algorithm  

Now, let define, as in previous section, vectors = Î( ) ( : )x x Hi it it , = Î( ) ( : )s s Hi it it ,  

= Î( ) ( : )z z Hi it it , b= Î,( : )β Ci c i c  and = Î( ) ( : )μ μ Hi it it . In the contest of the considered 

model, β i  and ( )μ i  are viewed as missing data. Then, the complete data of our model consists 

of the vector of observed variable =( ) ( ) ( ) ( )( , , )ζ x s zi i i i , of the vector of unobserved variables 

( )( , )β μi i , for = 1,...,i N . The complete data log-likelihood function is the sample log-likelihood 

function of the joint model of the dependent and missing variables, ( ) ( )( , , )x β μi i i , given the 

exogenous variables of the model, ( )s i  and ( )z i , for = 1,...,i N . The contribution of individual i 

in the complete data log-likelihood function at θ  of our model is given by:  

 (3A.8) =( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ln ( ; , , | ; ) ln ( , , | , ; )θ x β μ s z x β μ s z θl c
i i i i i i i i i if  

where:- 

(3A.9) 
j s j j

= =
¢= - + - - + - -å å

( ) ( )

( ) ( ) ( ) ( )

2

1 1

ln ( , , | , ; )

      ln ( ( ); ) ln ( ; ) ln ( ; ).

x β μ s z θ

s h μ μ β Z δ Ω β ω Z π ψ
i i

i i i i i

T T

it it it it i it i it t

f

x
 

The term j ( , )A B  denotes the probability density function at point A of the standard 

multivariate normal distribution with variance-covariance matrix B. Note that the complete 
data log-likelihood belongs to exponential family. The corresponding observed data log-
likelihood can be obtained by integrated the complete data likelihood with respect the 
missing data: 

(3A.10) = ò( ) ( ) ( ) ( ) ( ) ( )ln ( ; | , ) ln ( , , | , ; ) ( , )θ x s z x β μ s z θ μ βl i i i i i if d . 

Then, the maximum likelihood estimator is obtained by maximizing the observed data log-
likelihood: 

(3A.11) 
=

= å ( ) ( ) ( )1
argmax ln ( ; | , )θθ θ x s zl

tot

NMLE
N i i ii

. 

Note that ( ) ( ) ( )( ; | , )θ x s zl i i i  has not a closed form and direct maximization of the observed data 

log-likelihood is problematic.  Indeed, it is well known that the direct maximization of this kind 
of observed log-likelihood using algorithms, as Newton-Raphson, is problematic. Model is 
non-linear in random terms. Iterative algorithms as EM algorithm and its variants are suitable 

to maximize  
=å ( ) ( )1

ln ( ; | )θ x sl
N

i ii
 in our case and the complete data log-likelihood must be 

considered instead. 

The standard EM algorithm involves two steps until convergence: the Expectation and the 
Maximization steps. The Expectation step of EM of standard EM algorithm of our model 
involves computing the following conditional expectation: 
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(3A.12) - -= ò
( 1) ( 1)

( ) ( ) ( ) ( )( | ) (ln ( ; , , | , )) ( , | , , ; ) ( , )θ θ θ x μ β s z μ β x s z θ μ βln c n
i i i i i i iq f d  

where: 

(3A.13)  - - -=( 1) ( 1) ( 1)
( ) ( ) ( ) ( ) ( ) ( )( , | , , ; ) ( | ; ) ( | , , ; )μ β x s z θ β μ θ μ x s z θn n n
i i i i i if f f  

At the Maximization step, ( )θ n  is updated following: 

(3A.14)  -

=
= å( ) ( 1)

1
argmax ( | )θθ θ θ

Nn n
ii

q . 

In our case, the E-step has not a simple form. However, it is possible to simplify it using some 
factorizations detailed below. Let consider the following factorization: 

(3A.15)  - - -= ò
( 1) ( 1) ( 1)

( ) ( )( | ) ( ; | ) ( | , ; )βθ θ μ θ θ μ x s θ μn n n
i i i iq q f d  

Where: 

(3A.16)  - -= ò
( 1) ( 1)

( ) ( )( ; | ) ln ( ; , , | , ) ( | ; )β μ θ θ θ x μ β s z β μ θ βln c n
i i i iq f d . 

It is easy to show that -( 1)( ; | )β μ θ θ n
iq  has an explicit form: 

 (3A.18)

 

( )

( ) ( )

( )

( )

( )

( 1) 2

1

( 1) 1 ( 1)1
, ( ) ,21

( 1) ( 1) 1
, 2

( ; | ) ln ( );

                            ln ( ; ) ; tr ( )

                            ln ( ; ) ; ); tr

i

i

Tn
i it it itt

T n n
it i it i it

n n
i i

q

T

j s

j

j

-

=

- - -

=

- -

¢= -

+ - - -

+ - - -

å

å

β

β β

β

μ θ θ x s h μ

μ m μ θ Z δ Ω Ω V θ

m μ θ ω Z π θ ψ 1 ( 1)
,( ( ))n
i

- -

βψ V θ

 

Finally, to compute -( 1)( | )θ θ n
iq  , we need to integrate -( 1)( ; | )β μ θ θ n

iq  with respect to the 

conditional distribution -( 1)
( ) ( ) ( )( | , , ; )μ x s z θ n
i i if .  As said above, -( 1)

( ) ( ) ( )( | , , ; )μ x s z θ n
i i if  has not 

a simple form and we need to use simulation approaches. Thus, we use approximated-SAEM 

algorithm (Allassonnière and Chevallier, 2021) to compute -( 1)( | )θ θ n
iq  once -( 1)( ; | )β μ θ θ n

iq  is 

known. 

The approximated-SAEM algorithm proposed by Allassonière and Chevallier (2021) is an 
extension of the SAEM algorithm (Delyon et al, 1999, Kuhn and Lavielle, 2004) where the 
simulation step is improved. It consists in three steps until convergence: the simulation (S) 
step, the stochastic approximation (SA) step and the maximization (M) step. At iteration (n) 

and given  ( -( 1)
( ) ( ) ( ), , ,x s z θ n
i i i ), we have: 

• S-step:  simulate the missing data +( 1)μ%n
i  under the approximated probability density 

function  -( 1)
( ) ( ) ( ) ( )

ˆ ( | , , ; )μ x s z θ n
n i i i if  for = 1,...,i N , 

• SA-step: update ( )θnQ  as: 

( )l -

- -=
= + -å ( ) ( 1)

1 ( ) 11
( ) ( ) ( ; | ) ( )βθ θ μ θ θ θ%

N n n
n n n i i ni

Q Q q Q  

• M-step: update ( )θ n  according to: 
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=( ) argmax ( )θθ θn
nQ . 

As in standard SAEM algorithm (Delyon et al., 1999), the sequence l Î( )( ) Nn n  must be a 

decreasing positive sequence such that l =(1) 1 , l
+ ¥

=
= + ¥å ( )1 nn

 and l
+ ¥

=
< + ¥å 2

( )1 nn
. This 

sequence defines the step of the stochastic approximation and affects the speed of the 
convergence of the algorithm to the Maximum Likelihood. Kuhn and Lavielle (2005) proposes 

to set  l =( ) 1n  for the first 1n  iterations of the algorithm and then gradually reduce l ( )n . The 

approximated density -( 1)
( ) ( )

ˆ ( , , )μ x θ n
n i if  is defined by: 

(3A.19) - -= 1/( 1) ( 1)
( ) ( ) ( ) ( ) ( ) ( )

1ˆ ( | , ; ) ( | , ; )
( )θ

μ x s θ μ x s θ nTn n
n i i i i i i

n

f f
C T

 

where 
Î( ) Nn nT  is a sequence of positive numbers such that ® + ¥ =lim 1n nT  and ( )θ nC T  is a 

scaling constant. Allassonnière and Chevallier (2021) proposes to use an oscillatory 
temperature pattern: nT  must be oscillated around one with decreasing amplitude. They 

prove the convergence of their algorithm toward a (global) maximum of the (observed) 
likelihood for the complete data belonging to the exponential family. Their algorithm allows 
escaping local maxima and can be efficient in the case of high–dimensional random 
parameters. 

Now, we describe the algorithm used in this study, which combine standard EM algorithm 

and approximated-SAEM algorithm. In our case, as said above,  ( )( ; | )β μ θ θ% n
i iq  belongs to 

exponential family, one of the convergence conditions of the approximated-SAEM algorithm.  

The considered algorithm in this section consists in three steps. At iteration n and given 

observed data ( ) ( ) ( )( , , )x s zi i i  and -( 1)θ n  : 

• S-step: Simulate { }=( )
, : 1,...,μ%n

i r r R  according to the approximated probability density 

function  -( 1)
( ) ( ) ( ) ( )

ˆ ( | , , ; )μ x s z θ n
n i i i if  for = 1,...,i N , 

• SA-step: update the following sufficient statistics according to35:  

( )( ) ( 1) 1 ( ) ( 1) ( 1)
1, 1, ( ) ( ), 1,1

( ; )
Rn n n n n

i i n i r ir
Rl- - - -

=
= + -å βs s m μ θ s%  for i, 

( )( ) ( 1) 1 ( ) ( 1) ( ) ( 1) ( 1)
2 2 ( ) ( ), ( ), 21 1

( ; ) ( ; )
N Rn n n n n n n

n i r i ri r
Rl- - - - -

= =
¢= + -å å β βs s m μ θ m μ θ s% %  for i, 

( )( ) ( 1) 1 ( ) ( ) ( 1) ( 1)
3, 3, ( ) , ( ), 3,1

( ( ; ))
Rn n n n n n

it it n it r i r itr
Rl- - - -

=
= + - -å βs s μ m μ θ s% % , for it, 

( )( )( ) ( 1) 1 ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)
4 4 ( ) , ( ), , ( ), 41 1 1

( ( ; ))( ( ; )) ,
iR N Tn n n n n n n n n

n it r i r it r i rr i t
Rl- - - - -

= = =
¢= + - - -å å å β βs s μ m μ θ μ m μ θ s% % % %  

( )( )( )( ) ( 1) 1 ( ) ( ) ( 1)
5, 5, ( ) , , 5,1 1

( ) ( ) ,
iR Tn n n n n

i i n it it it it r it it it r ir t
s s R w sl- - -

= =

æ ö¢ ÷ç ¢ ¢= + - - - ÷ç ÷÷çè ø
å å x s h μ x s h μ% %  

 
 

 

35 Differentiating ( 1)( | )nQ -θ θ  with respect to the parameters θ  allows us to choose these minimal sufficient statistics.  
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• M-step: update parameters θ  according to:  

( ) 1 ( ) ( 1)
1,1

( )
Nn n n

i ii
N- -

=
= -åω s Z π , 

( )
1

( ) 1 1 ( ) ( )
1,1 1

( )
N Nn n n

i i i ii i

-
- -

= =
¢ ¢= -å åπ Zψ Z Zψ s ω , 

( )( ) ( )
1

( ) ( )
3,1 1 1 1

i iN T N Tn n
it it it iti t i t

-

= = = =
¢ ¢= å å å åδ Z Z Z s , 

( ) ( ) ( ) ( ) ( 1)
,( ) 1 ( ) 1

2 1 ( ) ( ) ( ) ( ) ( ) ( )
1, 1,

( )( ) ( )

( ) ( )

n n n n n
N i i in n

i n n n n n n
i i i i

N N

-

- -

=

æ ö¢+ + + ÷ç ÷ç= + ÷ç ÷ç ¢ ¢ ÷ç - + - +è ø
å

βω Z π ω Z π V θ
ψ s

s ω Z π ω Z π s
, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
3, 3,( ) 1 ( ) 1 1

4 1 ( 1)
( ) ,

( ) ( ) ( )
diag ,

( )

iT n n n n n n
N it it it it it itn n t

tot tot i n
i i

N N
T

- - =

= -

æ öæ ö¢ ¢ ¢ ÷- -ç ÷ç ÷÷ç ç ÷÷= +ç ç ÷÷ç ç ÷÷ç ç ÷÷+ç è øè ø

å
å

β

Z δ Z δ s Z δ Z δ s
Ω s

V θ
 

            2( ) 1 ( )
5,1

Nn n
tot ii

N ss -

=
= å . 

These three steps are iteratively used until convergence. The simulation step consists in 

sampling μ  from the approximated density -( 1)
( ) ( ) ( ) ( )

ˆ ( | , , ; )μ x s z θ n
n i i i if . Using Bayes’ formula, 

this density is proportional to 

(3A.20) 

 
( )j s

j

- -

=

- - - -

¢µ -

+ - Ä + -

å
( )

( )

( 1) 2( 1)
( ) ( ) ( ) ( ) ( )1

( 1) ( 1) ( 1) ( 1)
( ) ( ) ( )

ˆln ( | , , ; ) ln ( );

                                             ln ( ( ) ; )

μ x s z θ s h μ

μ ι ω Z π Z δ G

i

i

Tn n
n i i i i it it it nt

n n n n
i T i i n i

f x T

T
, 

and the sequence 
Î( ) Nn nT  can be viewed as a sequence of precision parameters. We cannot 

use direct simulation for -( 1)
( ) ( ) ( ) ( )

ˆ ( | , , ; )μ x s z θ n
n i i i if . Thus, to perform simulation step, at 

iteration (n) of the algorithm, we use a few (R) MCMC iterations with -( 1)
( ) ( ) ( ) ( )

ˆ ( | , , ; )μ x s z θ n
n i i i if  

as the stationary distribution.  More precisely, for each respond (farmer or farm) i, (i=1,…,N), 
we  use Metropolis-Hasting algorithm with two kernels (R1 iterations for the first kernel and 

R2 iterations for the second kernel). To generate a candidate ( )
( )μ k
i , the first kernel we consider 

is the marginal distribution of ( )μ i , j - - -- - Ä
( )

( ) ( 1) ( 1) ( 1)
( ) ( )( ; )μ μ α ι ω G:

i

k n n n
i T nT  and the second 

kernel is the random walk: k- -( ) ( 1) ( 1)
( ) ( )( , )μ μ Σ: Nk k n
i i . -( 1)Σ n   is the diagonal matrix of -( 1)

( )G
n

nT  

and k  is adaptively chosen so that the acceptance rate is within a given range.  

Let  ( )( | )μ μc rg  denotes the kernel of the Metropolis-Hasting algorithm where ( )μ r  denotes 

the current value of ( )μ i  . The probability of acceptance for μ c  given the current value ( )μ r  is 

given by: 

(3A.21)  
-

-

æ ö
÷ç ÷ç= ÷ç ÷ç ÷è ø

( 1) ( )
( ) ( ) ( )( )

( )( ) ( 1)
( ) ( ) ( )

ˆ ( | , , ; ) ( | )
( , ) min 1,

ˆ ( | )( | , , ; )

μ x s z θ μ μ
μ μ

μ μμ x s z θ

c n r c
n i i ir c

c rr n
n i i i

f g
r

gf
. 

For the marginal distribution kernel, the probability of acceptance is reduced to  
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(3A.22)  
( )

( )

j s

j s

-

=

-

=

æ ö¢- ÷ç ÷ç ÷= ç ÷ç ÷¢ç - ÷çè ø

Õ

Õ

( )

( )

2( 1)

( ) 1

( ) 2( 1)

1

( );
( , ) min 1,

( );

x s h μ
μ μ

x s h μ

i

i

T c n
it it it nr c t

T r n
it it it nt

T
r

T
, 

and for the random walk kernel, it is given by: 

(3A.23)
 

( )

( )

j j s

j j s

- - - - -

=

- - - - -

=

æ ö¢- Ä + - - ÷ç ÷ç= çç ¢ç - Ä + - -çè ø

Õ

Õ

( )

( )

( )

( )

( )

( 1) ( 1) ( 1) ( 1) 2( 1)
( ) 1

( ) ( 1) ( 1) ( 1) ( 1) ( ) 2( 1)
( ) 1

( , )

( ( ) ; ) ( );
min 1,

( ( ) ; ) ( );

μ μ

μ ι ω Z π Z δ G x s h μ

μ ι ω Z π Z δ G x s h μ

i

i

i

i

r c

Tc n n n n c n
T i i n i it it it nt

Tr n n n n r n
T i i n i it it it nt

r

T T

T T
÷÷÷÷
.
  

 

Accounting for weighted data 

Let define, as in previous section, vectors = Î( ) ( : )x x Hi it it , = Î( ) ( : )s s Hi it it , 

= Î( ) ( : )z z Hi it it , b= Î,( : )β Ci c i c and = Î( ) ( : )μ μ Hi it it . Now, we assume that observations 

may depend on weights = Î( ) ( : )w Hi it iw t  as in FADN data. Observations xit  conditional on 

s it  and z it are independently distributed with respect to the weight itw .The complete data 

likelihood depends now on the weights through the following decomposition: 

(3A.24)  
=

= Õ
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )1
( ; , , | , , ) ( , ; ) ( | , , , ; )θ x μ β s z w μ β θ x μ s z θl

iTc
i i i i i i i i it it it i itt

f f w . 

In this decomposition, only the conditional distribution of observed data xit depends on 

weights itw . Indeed, this is justified by the fact that the distribution of the random parameters 

of interest is the distribution at the population level. If we are interested in the distribution 
of the random parameters at the sample level, it is not necessary to introduce the weights 
but the hypothesis of independence of the observations remains strong. 

It is also assumed that: 

(3A.25)  = 1
( )( | , , , ; ) ( | , , ; )μ s z θ μ s z θ it

it

w
it it it it it it it it itC wf x w f x  

where ( | , , ; )x μ s z θit it it itf  is a probability density function of | , ,x μ s zit it it it , and ( )itC w  is a 

normalized constant. Indeed, raise ( | , ; )x μ s θit it itf  to the power itw in maximum likelihood 

setting is equivalent to “observing xit itw  times given μ it  s it  and z it ” in standard approaches. 

However, ( | , ; )x μ s θ itw
it it itf  is not a probability density function and we need to normalize it. 

Gebru et al., (2016) use the same approach to account for weighted data in other context. In 
our case: 

(3A.26)  ( )j s -¢µ - 2( 1)( | , , , ; ) ( );(1 / )μ s z θ s h μ n
it it it it it it it it itf x w x w . 

Given equations (39) and (41), the estimation procedure will change little from that described 
above for unweighted observations. Only the simulation step changes. At iteration n and 

given observed data ( ) ( ) ( ) ( )( , , , )i i i ix s z w  and -( 1)θ n , the approximated probability density 

function depends now on ( )iw  and we have: 
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(3A.27)  
( )( )

( )

( 1) 2( 1)
( ) ( ) ( ) ( ) ( ) ( )1

( 1) ( 1) ( 1) ( 1)
( ) ( ) ( )

ˆln ( | , , , ; ) ln ( ); (1 / )

                                           ln ( ( ) ; )

i

i

Tn n
n i i i i i it it it n itt

n n n n
i T i i n i

f x T w

T

j s

j

- -

=

- - - -

¢µ -

+ - Ä + -

åμ x s z w θ s h μ

μ ι ω Z π Z δ G
 

At each iteration the algorithm consists in three step until convergence : 

• S-step: Simulate { }=( )
, : 1,...,μ%n

i r r R  according to the approximated probability density 

function ( 1)
( ) ( ) ( ) ( ) ( )

ˆln ( | , , , ; )n
n i i i i if -μ x s z w θ    for = 1,...,i N , 

• SA-step: update the following sufficient statistics according to36:  

( )( ) ( 1) 1 ( ) ( 1) ( 1)
1, 1, ( ) ( ), 1,1

( ; )
Rn n n n n

i i n i r ir
Rl- - - -

=
= + -å βs s m μ θ s%  for i, 

( )( ) ( 1) 1 ( ) ( 1) ( ) ( 1) ( 1)
2 2 ( ) ( ), ( ), 21 1

( ; ) ( ; )
N Rn n n n n n n

n i r i ri r
Rl- - - - -

= =
¢= + -å å β βs s m μ θ m μ θ s% %  for i, 

( )( ) ( 1) 1 ( ) ( ) ( 1) ( 1)
3, 3, ( ) , ( ), 3,1

( ( ; ))
Rn n n n n n

it it n it r i r itr
Rl- - - -

=
= + - -å βs s μ m μ θ s% % , for it, 

( )( )( ) ( 1) 1 ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)
4 4 ( ) , ( ), , ( ), 41 1 1

( ( ; ))( ( ; )) ,
iR N Tn n n n n n n n n

n it r i r it r i rr i t
Rl- - - - -

= = =
¢= + - - -å å å β βs s μ m μ θ μ m μ θ s% % % %  

( )( )( )( ) ( 1) 1 ( ) ( ) ( 1)
5, 5, ( ) , , 5,1 1

( ) ( ) ,
iR Tn n n n n

i i n it it it r it it it r ir t
s s R sl- - -

= =

æ ö¢ ÷ç ¢ ¢= + - - - ÷ç ÷÷çè ø
å å x s h μ x s h μ% %  

• M-step: update parameters θ  according to:  

( ) 1 ( ) ( 1)
1,1

( )
Nn n n

i ii
N- -

=
= -åω s Z π , 

( )
1

( ) 1 1 ( ) ( )
1,1 1

( )
N Nn n n

i i i ii i

-
- -

= =
¢ ¢= -å åπ Zψ Z Zψ s ω , 

( )( ) ( )
1

( ) ( )
3,1 1 1 1

i iN T N Tn n
it it it iti t i t

-

= = = =
¢ ¢= å å å åδ Z Z Z s , 

( ) ( ) ( ) ( ) ( 1)
,( ) 1 ( ) 1

2 1 ( ) ( ) ( ) ( ) ( ) ( )
1, 1,

( )( ) ( )

( ) ( )

n n n n n
N i i in n

i n n n n n n
i i i i

N N

-

- -

=

æ ö¢+ + + ÷ç ÷ç= + ÷ç ÷ç ¢ ¢ ÷ç - + - +è ø
å

βω Z π ω Z π V θ
ψ s

s ω Z π ω Z π s
, 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
3, 3,( ) 1 ( ) 1 1

4 1 ( 1)
( )

( ) ( ) ( )
diag ,

( )

iT n n n n n n
N it it it it it itn n t

tot tot i n
i

N N
T

- - =

= -

æ öæ ö¢ ¢ ¢ ÷- -ç ÷ç ÷÷ç ç ÷÷= +ç ç ÷÷ç ç ÷÷ç ç ÷÷+ç è øè ø

å
å

β

Z δ Z δ s Z δ Z δ s
Ω s

V θ
  

2( ) 1 ( )
5,1

Nn n
tot ii

N ss -

=
= å . 

  

 

36 Differentiating ( 1)( | )nQ -θ θ  with respect to the parameters θ  allows us to choose these minimal sufficient statistics.  
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APPENDIX 6A: MODEL FORMULATION FOR NON-
REALLOCATION WITH SIMULTANEOUS INEFFICIENCY 

𝑚𝑎𝑥
𝛽𝑖,𝛼𝑖,𝜆𝑘,𝛾𝑘,𝜇𝑘

𝛽𝑖                                                                       (A) 

s.t.  

 ∑ 𝜆𝑘𝑥𝑘
𝐶  ≤  𝑥𝑖

𝐶𝐾
𝑘=1   (6Aa) 

 

 ∑ λk𝑚𝑘
𝐿,𝑢   ≤  mi

L,uK
k =1      (6Ab) 

 

 ∑ 𝜆𝑘
𝐾
𝑘=1 𝑥𝑘

𝐶,𝑙 − 𝑥𝑖
𝐶,𝑙 ≤ 0     (6Ac) 

 

 ∑ 𝜆𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (6Ad) 

 

 ∑ 𝜆𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1   (6Ae) 

   

 ∑ −𝜆𝑘𝑦𝑘
𝐶 + 𝛽𝑖𝑔𝑦,𝑘

𝐶 ≤  − 𝑦𝑖
𝐶  𝐾

𝑘=1   (6Af) 

 

 ∑ −𝜆𝑘𝑧𝑘
𝐶 + 𝛽𝑖𝑔𝑧,𝑘

𝐶 ≤  − 𝑧𝑖
𝐶   𝐾

𝑘=1   (6Ag) 

   

 ∑ 𝜆𝑘
𝐾
𝐾=1 = 1    (6Ah) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑓ℎ
 ≤  𝑥𝑖

𝐿,𝑓ℎ
  (6Ai) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑎  ≤  𝑥𝑖
𝐿,𝑎

  (6Aj) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑙 − 𝑥𝑖
𝐿,𝑙  ≤  0   (6A6) 

   

 ∑ 𝛾𝑘𝑧𝑘
𝐶  ≤   𝑧𝑖

𝐶𝐾
𝑘=1   (6Al) 

   

 ∑ 𝛾𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (6Am) 

 

 ∑ 𝛾𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1   (6An) 

 

 ∑ − 𝛾𝑘𝑦𝑘
𝐿 +  𝛽𝑖𝑔𝑦,𝑘

𝐿 ≤  −𝑦𝑖
𝐿𝐾

𝑘=1     (6Ao) 
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 ∑ 𝛾𝑘
𝐾
𝐾=1 = 1   

 

(6A7) 

 ∑ 𝛾𝑘(𝑚𝑘
𝐿,𝑢 +  𝑚𝑘

𝐿,𝑝) =  𝑚𝑖
𝐿,𝑢 +  𝑚𝑖

𝐿,𝑝 𝐾
𝑘=1   

 

(6Aq) 

 ∑ − 𝜇𝑘𝑥𝑘
𝐶,𝑝 ≤ −𝐾

𝑘=1 𝑥𝑖
𝐶,𝑝   

 

(6Ar) 

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑎 ≤ − 𝑥𝑖

𝐿,𝑃𝑎 𝐾
𝑘=1   (6A8) 

 

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓

≤ − 𝑥𝑖
𝐿,𝑃𝑓

 𝐾
𝑘=1   (6At) 

   

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓𝑐

≤ − 𝑥𝑖
𝐿,𝑃𝑓𝑐

 𝐾
𝑘=1   (6Au) 

   

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑒 ≤ − 𝑞𝑖

𝐽,𝑝𝑒 𝐾
𝑘=1   

 

(6Av) 

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑚 ≤ − 𝑞𝑖

𝐽,𝑝𝑚 𝐾
𝑘=1   (6Aw) 

   

 ∑ 𝜇𝑘𝑒𝑘 +  𝛽𝑖𝑔𝑒,𝑘 ≤  𝑒𝑖   
𝐾
𝑘=1   (6Ax) 

   

 ∑ 𝜇𝑘
𝐾
𝐾=1 = 1    

 

(6A9) 

 

 

  

APPENDIX 6B: SEPARATE INEFFICIENCIES FOR GHG 
EMISSIONS AND OUTPUTS 

max
𝛽𝑖,𝛼𝑖,𝜆𝑘,𝛾𝑘,𝜇𝑘

𝑋𝑖
𝐶,𝑙 ≥ 0,𝑋𝑖

𝐿,𝑙≥0

(𝛽𝑖 + 𝛼𝑖)/2                                                                           (6B1) 

s.t. 

 ∑ 𝜆𝑘𝑥𝑘
𝐶  ≤  𝑥𝑖

𝐶𝐾
𝑘=1   

 

(6B1a) 

 ∑ λkmk
L,u   ≤  mi

L,uK
k =1   

  

(6B1b) 
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 ∑ 𝜆𝑘
𝐾
𝑘=1 𝑥𝑘

𝐶,𝑙 − 𝑥𝑖
𝐶,𝑙 ≤  0   (6B1c) 

 

 ∑ 𝜆𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (6B1d) 

   

 ∑ 𝜆𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1    (6B1e) 

   

 ∑ −𝜆𝑘𝑦𝑘
𝐶 + 𝛽𝑖𝑔𝑦,𝑘

𝐶 ≤  −𝑦𝑖
𝐶    𝐾

𝑘=1   (6B1f) 

   

 ∑ −𝜆𝑘𝑧𝑘
𝐶 + 𝛽𝑖𝑔𝑧,𝑘

𝐶 ≤  −𝑧𝑖
𝐶    𝐾

𝑘=1    (6B1g) 

   

 ∑ 𝜆𝑘
𝐾
𝐾=1 = 1    (6B1h) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑓ℎ
 ≤  𝑥𝑖

𝐿,𝑓ℎ  (6B1i) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑎  ≤  𝑥𝑖
𝐿,𝑎  (6B1j) 

   

 ∑ 𝛾𝑘
𝐾
𝑘=1 𝑥𝑘

𝐿,𝑙 − 𝑥𝑖
𝐿,𝑙  ≤  0  (6B1k) 

   

 ∑ 𝛾𝑘𝑧𝑘
𝐶  ≤  𝑧𝑖

𝐶𝐾
𝑘=1    (6B1l) 

   

 ∑ 𝛾𝑘𝑞𝑘
𝐽1   ≤  𝑞𝑖

𝐽1   𝐾
𝑘=1   (6B1m) 

   

 ∑ 𝛾𝑘𝑞𝑘
𝐽2   ≤  𝑞𝑖

𝐽2   𝐾
𝑘=1   (6B1n) 

   

 ∑ − 𝛾𝑘𝑦𝑘
𝐿 +  𝛽𝑖𝑔𝑦,𝑘

𝐿 ≤  −𝑦𝑖
𝐿𝐾

𝑘=1   (6B1o) 

   

 ∑ 𝛾𝑘
𝐾
𝐾=1 = 1  (6B1p) 

 

 ∑ 𝛾𝑘(𝑚𝑘
𝐿,𝑢 +  𝑚𝑘

𝐿,𝑝) =  𝑚𝑖
𝐿,𝑢 +  𝑚𝑖

𝐿,𝑝 𝐾
𝑘=1   (6B1q) 

   

 ∑ − 𝜇𝑘𝑥𝑘
𝐶,𝑝 ≤ −𝐾

𝑘=1 𝑥𝑖
𝐶,𝑝  (6B1r) 
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 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑎 ≤ − 𝑥𝑖

𝐿,𝑃𝑎 𝐾
𝑘=1   (6B1s) 

   

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓

≤ − 𝑥𝑖
𝐿,𝑃𝑓

 𝐾
𝑘=1   (6B1t) 

   

 ∑ − 𝜇𝑘𝑥𝑘
𝐿,𝑃𝑓𝑐

≤ − 𝑥𝑖
𝐿,𝑃𝑓𝑐

 𝐾
𝑘=1   (6B1u) 

   

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑒 ≤ − 𝑞𝑖

𝐽,𝑝𝑒 𝐾
𝑘=1   (6B1v) 

   

 ∑ − 𝜇𝑘𝑞𝑘
𝐽,𝑝𝑚 ≤ − 𝑞𝑖

𝐽,𝑝𝑚 𝐾
𝑘=1   (6B1w) 

   

 ∑ 𝜇𝑘𝑒𝑘 + 𝛼𝑖 𝑔𝑒,𝑘 ≤  𝑒𝑖   
𝐾
𝑘=1   (6B1x) 

   

 ∑ 𝜇𝑘
𝐾
𝐾=1 = 1  (6B1y) 

   

 𝑥𝑖
𝐶,𝑙   +  𝑥𝑖

𝐿,𝑙 =  𝑥𝑖 
𝑙   (6B1z) 

 

 


